Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Japan.
Sci Rep. 2020 Dec 18;10(1):21285. doi: 10.1038/s41598-020-78284-4.
Diffusion-weighted magnetic resonance imaging (dMRI) allows non-invasive investigation of whole-brain connectivity, which can reveal the brain's global network architecture and also abnormalities involved in neurological and mental disorders. However, the reliability of connection inferences from dMRI-based fiber tracking is still debated, due to low sensitivity, dominance of false positives, and inaccurate and incomplete reconstruction of long-range connections. Furthermore, parameters of tracking algorithms are typically tuned in a heuristic way, which leaves room for manipulation of an intended result. Here we propose a general data-driven framework to optimize and validate parameters of dMRI-based fiber tracking algorithms using neural tracer data as a reference. Japan's Brain/MINDS Project provides invaluable datasets containing both dMRI and neural tracer data from the same primates. A fundamental difference when comparing dMRI-based tractography and neural tracer data is that the former cannot specify the direction of connectivity; therefore, evaluating the fitting of dMRI-based tractography becomes challenging. The framework implements multi-objective optimization based on the non-dominated sorting genetic algorithm II. Its performance is examined in two experiments using data from ten subjects for optimization and six for testing generalization. The first uses a seed-based tracking algorithm, iFOD2, and objectives for sensitivity and specificity of region-level connectivity. The second uses a global tracking algorithm and a more refined set of objectives: distance-weighted coverage, true/false positive ratio, projection coincidence, and commissural passage. In both experiments, with optimized parameters compared to default parameters, fiber tracking performance was significantly improved in coverage and fiber length. Improvements were more prominent using global tracking with refined objectives, achieving an average fiber length from 10 to 17 mm, voxel-wise coverage of axonal tracts from 0.9 to 15%, and the correlation of target areas from 40 to 68%, while minimizing false positives and impossible cross-hemisphere connections. Optimized parameters showed good generalization capability for test brain samples in both experiments, demonstrating the flexible applicability of our framework to different tracking algorithms and objectives. These results indicate the importance of data-driven adjustment of fiber tracking algorithms and support the validity of dMRI-based tractography, if appropriate adjustments are employed.
弥散磁共振成像(dMRI)可用于非侵入性的全脑连接研究,揭示大脑的整体网络结构,以及神经和精神疾病中的异常。然而,基于弥散张量成像的纤维追踪推断的可靠性仍存在争议,这是由于其灵敏度低、假阳性占主导地位,以及长程连接的重建不准确和不完整。此外,跟踪算法的参数通常是通过启发式方法进行调整的,这为有意操纵结果留下了空间。在这里,我们提出了一个通用的数据驱动框架,使用神经示踪剂数据作为参考,来优化和验证基于弥散磁共振成像的纤维追踪算法的参数。日本脑/思维计划提供了宝贵的数据集,其中包含来自同一灵长类动物的弥散磁共振成像和神经示踪剂数据。与基于弥散磁共振成像的纤维追踪数据相比,比较两者的一个根本区别在于前者不能指定连接的方向;因此,评估基于弥散磁共振成像的纤维追踪的拟合度具有挑战性。该框架基于非支配排序遗传算法 II 实现多目标优化。我们使用十个优化和六个测试泛化的对象的数据集在两个实验中检查了其性能。第一个实验使用基于种子的追踪算法 iFOD2 和区域连接的灵敏度和特异性的目标。第二个实验使用全局追踪算法和更精细的目标集:距离加权覆盖、真/假阳性比、投影一致性和胼胝体通道。在两个实验中,与默认参数相比,使用优化参数可以显著提高纤维追踪的覆盖率和纤维长度。使用具有细化目标的全局追踪时,改进更为明显,平均纤维长度从 10 到 17mm,轴突束的体素覆盖率从 0.9 到 15%,目标区域的相关性从 40 到 68%,同时最小化假阳性和不可能的跨半球连接。在两个实验中,优化后的参数对测试脑样本具有良好的泛化能力,表明我们的框架具有灵活的适用性,可以用于不同的追踪算法和目标。这些结果表明,如果采用适当的调整,基于弥散磁共振成像的纤维追踪的可靠性是非常重要的。