Hosokawa Naoki, Ozawa Kyohei, Koike Kazuhide, Tamaki Yusuke, Ishitani Osamu
Department of Chemistry, School of Science, Institute of Science Tokyo (Tokyo Institute of Technology) 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan.
National Institute of Advanced Industrial Science and Technology Onogawa 16-1 Tsukuba Ibaraki 305-8569 Japan.
Chem Sci. 2025 Jan 28;16(10):4279-4289. doi: 10.1039/d4sc08268k. eCollection 2025 Mar 5.
While the quantum yields of photosensitiser-derived one-electron-reduced species (OERSs) significantly impact the overall efficiencies of various redox-photosensitised photocatalytic reactions, the primary factors that influence them remain unclear. In this study, we systematically compared the photochemical formation quantum yields for OERSs associated with Ru(ii) and Os(ii) tris-diimine, , -[Re(diimine)(CO)(PR)], and cyclometalated Ir(iii) complexes in the presence of the same 1,3-dimethyl-2-phenyl-2,3-dihydro-1-benzo[]imidazole (BIH) reductant. The reduction potentials of the excited metal complexes, the heavy-atom effects of the central metal ions, and the oxidation potentials and charges of their OERSs were examined, which reveals that the driving force for photoinduced electron-transfer is the most important factor that determines the quantum yields associated with photochemical OERS formation. For complexes with higher oxidation power in their excited states, the formation quantum yield of OERSs divided by the quenching efficiency of the excited state by BIH is greater. This finding suggests that a higher photoinduced electron-transfer exergonicity promotes electron transfer over larger excited-complex/BIH distances, which in turn enables more-efficient separation of the resulting OERSs and one-electron-oxidised BIH species.
虽然光敏剂衍生的单电子还原物种(OERSs)的量子产率对各种氧化还原光敏光催化反应的整体效率有显著影响,但其影响的主要因素仍不明确。在本研究中,我们系统地比较了在相同的1,3 - 二甲基 - 2 - 苯基 - 2,3 - 二氢 - 1 - 苯并咪唑(BIH)还原剂存在下,与Ru(ii)和Os(ii)三 - 二亚胺、 - [Re(二亚胺)(CO)(PR)]以及环金属化Ir(iii)配合物相关的OERSs的光化学形成量子产率。研究了激发态金属配合物的还原电位、中心金属离子的重原子效应以及它们的OERSs的氧化电位和电荷,结果表明光致电子转移的驱动力是决定光化学OERS形成相关量子产率的最重要因素。对于激发态具有较高氧化能力的配合物,OERSs的形成量子产率除以BIH对激发态的猝灭效率更大。这一发现表明,较高的光致电子转移放能性促进了电子在更大的激发态配合物/BIH距离上的转移,进而使得生成的OERSs和单电子氧化的BIH物种能够更有效地分离。