Suppr超能文献

Phi系数与单维度指标H之间的关系:从根本上改进心理测量。

The relationship between the phi coefficient and the unidimensionality index H: Improving psychological scaling from the ground up.

作者信息

Titz Johannes

机构信息

Department of Psychology, Research Methods and Evaluation in Psychology, Chemnitz University of Technology.

出版信息

Psychol Methods. 2025 Feb 10. doi: 10.1037/met0000736.

Abstract

To study the dimensional structure of psychological phenomena, a precise definition of unidimensionality is essential. Most definitions of unidimensionality rely on factor analysis. However, the reliability of factor analysis depends on the input data, which primarily consists of Pearson correlations. A significant issue with Pearson correlations is that they are almost guaranteed to underestimate unidimensionality, rendering them unsuitable for evaluating the unidimensionality of a scale. This article formally demonstrates that the simple unidimensionality index is always at least as high as, or higher than, the Pearson correlation for dichotomous and polytomous items (φ). Leveraging this inequality, a case is presented where five dichotomous items are perfectly unidimensional, yet factor analysis based on φ incorrectly suggests a two-dimensional solution. To illustrate that this issue extends beyond theoretical scenarios, an analysis of real data from a statistics exam ( = 133) is conducted, revealing the same problem. An in-depth analysis of the exam data shows that violations of unidimensionality are systematic and should not be dismissed as mere noise. Inconsistent answering patterns can indicate whether a participant blundered, cheated, or has conceptual misunderstandings, information typically overlooked by traditional scaling procedures based on correlations. The conclusion is that psychologists should consider unidimensionality not as a peripheral concern but as the foundation for any serious scaling attempt. The index could play a crucial role in establishing this foundation. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

为了研究心理现象的维度结构,单维度性的精确定义至关重要。大多数单维度性的定义都依赖于因素分析。然而,因素分析的可靠性取决于输入数据,而输入数据主要由皮尔逊相关性组成。皮尔逊相关性的一个重要问题是,它们几乎肯定会低估单维度性,使其不适用于评估量表的单维度性。本文正式证明,对于二分法和多分法项目,简单单维度性指数总是至少与皮尔逊相关性一样高,甚至更高(φ)。利用这一不等式,给出了一个案例,其中五个二分法项目是完全单维度的,但基于φ的因素分析却错误地暗示了一个二维解决方案。为了说明这个问题不仅仅存在于理论场景中,对一次统计学考试(n = 133)的真实数据进行了分析,结果发现了同样的问题。对考试数据的深入分析表明,违反单维度性是系统性的,不应仅仅被视为噪声而被忽视。不一致的答题模式可以表明参与者是失误、作弊还是存在概念误解,而这些信息通常被基于相关性的传统量表编制程序所忽略。结论是,心理学家应将单维度性视为任何严肃的量表编制尝试的基础,而不仅仅是一个次要问题。该指数在奠定这一基础方面可能发挥关键作用。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验