Suppr超能文献

基于生物心理社会模型的机器学习可预测全膝关节置换术后患者的康复情况。

Biopsychosocial based machine learning models predict patient improvement after total knee arthroplasty.

作者信息

Ribbons Karen, Cochrane Jodie, Johnson Sarah, Wills Adrian, Ditton Elizabeth, Dewar David, Broadhead Matthew, Chan Ian, Dixon Michael, Dunkley Christopher, Harbury Richard, Jovanovic Aleksandar, Leong Anthony, Summersell Peter, Todhunter Chad, Verheul Richard, Pollack Michael, Walker Rohan, Nilsson Michael

机构信息

Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, Australia.

Centre for Rehab Innovations, Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.

出版信息

Sci Rep. 2025 Feb 10;15(1):4926. doi: 10.1038/s41598-025-88560-w.

Abstract

Total knee arthroplasty (TKA) is an effective treatment for end stage osteoarthritis. However, biopsychosocial features are not routinely considered in TKA clinical decision-making, despite increasing evidence to support their role in patient recovery. We have developed a more holistic model of patient care by using machine learning and Bayesian inference methods to build patient-centred predictive models, enhanced by a comprehensive battery of biopsychosocial features. Data from 863 patients with TKA (mean age 68 years (SD 8), 50% women), identified between 2019 and 2022 from four hospitals in NSW, Australia, was included in model development. Predictive models for improvement in patient quality-of-life and knee symptomology at three months post-TKA were developed, as measured by a change in the Short Form-12 Physical Composite Score (PCS) or Western Ontario and McMasters Universities Osteoarthritis Index (WOMAC), respectively. Retained predictive variables in the quality-of-life model included pre-surgery PCS, knee symptomology, nutrition, alcohol consumption, employment, committed action, pain improvement expectation, pain in other places, and hand grip strength. Retained variables for the knee symptomology model were comparable, but also included pre-surgery WOMAC, pain catastrophizing, and exhaustion. Bayesian machine learning methods generated predictive distributions, enabling outcomes and uncertainty to be determined on an individual basis to further inform decision-making.

摘要

全膝关节置换术(TKA)是终末期骨关节炎的一种有效治疗方法。然而,尽管越来越多的证据支持生物心理社会特征在患者康复中的作用,但在TKA临床决策中,这些特征并未被常规考虑。我们通过使用机器学习和贝叶斯推理方法,构建以患者为中心的预测模型,并辅以一系列全面的生物心理社会特征,开发了一种更全面的患者护理模式。模型开发纳入了2019年至2022年期间在澳大利亚新南威尔士州四家医院确定的863例TKA患者的数据(平均年龄68岁(标准差8),50%为女性)。分别根据简短健康调查12项身体综合评分(PCS)或西安大略和麦克马斯特大学骨关节炎指数(WOMAC)的变化,开发了TKA术后三个月患者生活质量改善和膝关节症状的预测模型。生活质量模型中保留的预测变量包括术前PCS、膝关节症状、营养状况、饮酒情况、就业情况、承诺行动、疼痛改善期望、其他部位疼痛和握力。膝关节症状模型中保留的变量与之类似,但还包括术前WOMAC、疼痛灾难化和疲惫感。贝叶斯机器学习方法生成了预测分布,能够在个体基础上确定结果和不确定性,从而为决策提供进一步信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99d8/11811292/187d37defb14/41598_2025_88560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验