Suppr超能文献

在机器人辅助全膝关节置换术中,使用机器学习预测功能结果,手术因素起着至关重要的作用。

Surgical factors play a critical role in predicting functional outcomes using machine learning in robotic-assisted total knee arthroplasty.

机构信息

Stryker Department, Amsterdam, The Netherlands.

Orthopedic Surgery Department, South County Orthopaedics, Ortho Rhode Island, Wakefield, Rhode Island, USA.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2024 Dec;32(12):3198-3209. doi: 10.1002/ksa.12302. Epub 2024 May 31.

Abstract

PURPOSE

Predictive models help determine predictive factors necessary to improve functional outcomes after total knee arthroplasty (TKA). However, no study has assessed predictive models for functional outcomes after TKA based on the new concepts of personalised surgery and new technologies. This study aimed to develop and evaluate predictive modelling approaches to predict the achievement of minimal clinically important difference (MCID) in patient-reported outcome measures (PROMs) 1 year after TKA.

METHODS

Four hundred thirty robotic-assisted TKAs were analysed in this retrospective study. The mean age was 67.9 ± 7.9 years; the mean body mass index (BMI) was 32.0 ± 6.8 kg/m. The following PROMs were collected preoperatively and 1-year postoperatively: knee injury and osteoarthritis outcome score for joint replacement, Western Ontario and McMaster Universities osteoarthritis index (WOMAC) Function, WOMAC Pain. Demographic data, preoperative CT scan, implant size, implant position on the robotic system and characteristics of the joint replacement procedure were selected as predictive variables. Four machine learning algorithms were trained to predict the MCID status at 1-year post-TKA for each PROM survey. 'No MCID' was chosen as the target. Models were evaluated by class discrimination (F1-score) and area under the receiver operating characteristic curve (ROC-AUC).

RESULTS

The best-performing model was ridge logistic regression for WOMAC Function (area under the curve [AUC]  = 0.80, F1 = 0.48, sensitivity = 0.79, specificity = 0.62). Variables most strongly contributing to not achieving MCID status were preoperative PROMs, high BMI and femoral resection depth (posterior and distal), supporting functional positioning principles. Conversely, variables contributing to a positive outcome (achieving MCID) were medial/lateral alignment of the tibial component, whether the procedure was an outpatient surgery and whether the patient received managed Medicare insurance.

CONCLUSION

The most predictive variables included preoperative PROMs, BMI and surgical planning. The surgical predictive variables were valgus femoral alignment and femoral rotation, reflecting the benefits of personalised surgery. Including surgical variables in predictive models for functional outcomes after TKA should guide clinical and surgical decision-making for every patient.

LEVEL OF EVIDENCE

Level III.

摘要

目的

预测模型有助于确定全膝关节置换术(TKA)后改善功能结果所需的预测因素。然而,尚无研究基于个性化手术和新技术的新概念评估 TKA 后功能结果的预测模型。本研究旨在开发和评估预测建模方法,以预测 TKA 后 1 年患者报告的结果测量(PROM)达到最小临床重要差异(MCID)的情况。

方法

本回顾性研究分析了 430 例机器人辅助 TKA。平均年龄为 67.9±7.9 岁;平均体重指数(BMI)为 32.0±6.8kg/m。术前和术后 1 年收集以下 PROM:膝关节损伤和骨关节炎关节置换评分、西安大略和麦克马斯特大学骨关节炎指数(WOMAC)功能、WOMAC 疼痛。选择人口统计学数据、术前 CT 扫描、植入物大小、机器人系统上的植入物位置和关节置换手术的特征作为预测变量。使用四种机器学习算法对每个 PROM 调查的 TKA 后 1 年的 MCID 状态进行预测。选择“无 MCID”作为目标。通过分类判别(F1 评分)和接受者操作特征曲线下面积(ROC-AUC)评估模型。

结果

WOMAC 功能的最佳表现模型是岭逻辑回归(曲线下面积[AUC] = 0.80,F1 = 0.48,敏感性= 0.79,特异性= 0.62)。对未达到 MCID 状态贡献最大的变量是术前 PROM、高 BMI 和股骨切除深度(后向和远向),支持功能定位原则。相反,对取得积极结果(达到 MCID)有贡献的变量是胫骨组件的内侧/外侧对齐、手术是否为门诊手术以及患者是否接受管理型医疗保险。

结论

最具预测性的变量包括术前 PROM、BMI 和手术计划。手术预测变量是股骨外翻对齐和股骨旋转,反映了个性化手术的益处。在 TKA 后功能结果的预测模型中纳入手术变量应指导每位患者的临床和手术决策。

证据水平

III 级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验