Suppr超能文献

利用金属有机框架实现储氢中稳健相关性的白盒方法。

White-box methodologies for achieving robust correlations in hydrogen storage with metal-organic frameworks.

作者信息

Naghizadeh Arefeh, Hadavimoghaddam Fahimeh, Atashrouz Saeid, Abedi Ali, Essakhraoui Meriem, Mohaddespour Ahmad, Hemmati-Sarapardeh Abdolhossein

机构信息

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China.

出版信息

Sci Rep. 2025 Feb 10;15(1):4894. doi: 10.1038/s41598-025-87495-6.

Abstract

Hydrogen is recognized as a clean energy replacement for non-renewable fossil fuels, and the utilization of metal-organic frameworks (MOFs) for hydrogen storage has gained considerable interest in recent years. In this study, hydrogen storage in MOFs was estimated using white-box methods, namely group method of data handling (GMDH), genetic programming (GP), and gene expression programming (GEP), which are robust soft-computing methods known for generating innovative correlations. To this end, temperature, pressure, pore volume, and surface area were implemented as input parameters for constructing these robust correlations. After that, the superiority of the established correlations was demonstrated through multiple statistical and graphical error assessment. The results indicated, the GMDH model demonstrates the highest accuracy with root mean square error (RMSE), and mean absolute error (MAE) values of 0.410 and 0.307, respectively. However, the GEP model's accuracy was comparable to that of the GMDH model. In addition, sensitivity assessment showed that the pore volume and the pressure exhibit the strongest linear and non-linear relationships, respectively, with the H storage in MOFs. This was demonstrated by a Pearson correlation coefficient of 0.5 and a Spearman correlation coefficient of 0.56, respectively. Furthermore, temperature had a minimal negative impact on the H storage in MOFs according to Pearson, Spearman, and Kendall coefficients. Finally, to confirm the findings of the GMDH model, the leverage approach was applied, demonstrating that 96% of the data falls within the acceptable region, confirming the statistical reliability of the developed models.

摘要

氢被认为是不可再生化石燃料的清洁能源替代品,近年来利用金属有机框架(MOF)进行储氢受到了广泛关注。在本研究中,使用白箱方法,即数据处理分组法(GMDH)、遗传编程(GP)和基因表达式编程(GEP)来估计MOF中的储氢量,这些都是以生成创新关联而闻名的强大软计算方法。为此,将温度、压力、孔体积和表面积作为输入参数来构建这些强大的关联。之后,通过多种统计和图形误差评估证明了所建立关联的优越性。结果表明,GMDH模型表现出最高的准确性,其均方根误差(RMSE)和平均绝对误差(MAE)值分别为0.410和0.307。然而,GEP模型的准确性与GMDH模型相当。此外,敏感性评估表明,孔体积和压力分别与MOF中的储氢量呈现最强的线性和非线性关系。这分别由皮尔逊相关系数0.5和斯皮尔曼相关系数0.56证明。此外,根据皮尔逊、斯皮尔曼和肯德尔系数,温度对MOF中的储氢量影响最小。最后,为了证实GMDH模型的结果,应用了杠杆方法,结果表明96%的数据落在可接受区域内,证实了所开发模型的统计可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a46/11811014/639c520ff664/41598_2025_87495_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验