Suppr超能文献

了解不同的小胶质细胞功能状态以调节其在视网膜变性中的活性。

Understanding the Different Microglia Functional States to Modulate Their Activity in Retinal Degeneration.

作者信息

Ridley Raela B, Wang Yixiao, Ildefonso Cristhian J

机构信息

Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA.

University of California San Francisco, San Francisco, CA, USA.

出版信息

Adv Exp Med Biol. 2025;1468:139-142. doi: 10.1007/978-3-031-76550-6_23.

Abstract

Recent advances in genomic, transcriptomic, and imaging have advanced our understanding of microglia cells and their role in neurodegenerative diseases. These dynamic cells can change into distinct functional subpopulations with unique genetic markers and specialized functions once they migrate to the injury site. The model illustrated in Fig. 23.1 predicts that once the tissue recovers from the injury, the predominant microglia functional state should be the homeostatic state and localize within the retina's inner plexiform layers. However, microglia cells do not return to the predominantly homeostatic functional state during retinal degeneration (von Bernhardi et al., Front Aging Neurosci 7:124, 2015). Studies in animal models suggest that during retinal degeneration, rather than maintaining the homeostatic state, microglia can become dysregulated and remain pro-inflammatory, thus exacerbating tissue damage (Rashid et al., Front Immunol 10:1975, 2019; Wang and Cepko, Front Immunol 13:843558, 2022). To address the increased inflammation and excessive phagocytosis seen in these models, some studies employed the use of genetic and pharmacological methods to deplete retinal microglia (Zhao et al., EMBO Mol Med 7:1179-1197, 2015; Wang et al., J Neurosci 36:2827-2842, 2016). Because of their multiple physiological functions, microglia depletion is not a feasible therapeutic approach to address neuroinflammation. Instead, manipulating microglia functions should take center stage when developing therapies for neuroinflammation. Thus, defining the genetic network that regulates microglia functional states is essential to developing therapies to modulate microglia.

摘要

基因组学、转录组学和成像技术的最新进展加深了我们对小胶质细胞及其在神经退行性疾病中作用的理解。这些动态细胞一旦迁移到损伤部位,就会转变为具有独特遗传标记和特殊功能的不同功能亚群。图23.1所示的模型预测,一旦组织从损伤中恢复,主要的小胶质细胞功能状态应该是稳态状态,并定位于视网膜的内网状层。然而,在视网膜变性过程中,小胶质细胞不会恢复到主要的稳态功能状态(von Bernhardi等人,《衰老神经科学前沿》7:124,2015)。动物模型研究表明,在视网膜变性过程中,小胶质细胞不是维持稳态状态,而是可能失调并保持促炎状态,从而加剧组织损伤(Rashid等人,《免疫学前沿》10:1975,2019;Wang和Cepko,《免疫学前沿》13:843558,2022)。为了解决这些模型中出现的炎症增加和过度吞噬问题,一些研究采用了遗传和药理学方法来清除视网膜小胶质细胞(Zhao等人,《EMBO分子医学》7:1179 - 1197,2015;Wang等人,《神经科学杂志》36:2827 - 2842,2016)。由于小胶质细胞具有多种生理功能,清除小胶质细胞不是解决神经炎症的可行治疗方法。相反,在开发神经炎症治疗方法时,操纵小胶质细胞功能应该成为核心。因此,定义调节小胶质细胞功能状态的基因网络对于开发调节小胶质细胞的治疗方法至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验