Suppr超能文献

一锅法合成与硫化铋针异质结的表面活性剂插层二硫化锡纳米片用于高效将二氧化碳转化为甲酸盐。

One-pot synthesis of surfactant-intercalated tin(IV) disulfide nanosheets heterojuncted with bismuth(III) sulfide needles for efficient conversion carbon dioxide into formate.

作者信息

Wu Zelin, Yan Luntong, Lu Tongyu, Wang Haibo, Wang Chenbo, Guo Yuxuan, Wen Hui, Zhao Zhiyong, Wang Congwei, Guo Quangui, Wang Junying

机构信息

Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China.

Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

出版信息

J Colloid Interface Sci. 2025 Jun;687:36-47. doi: 10.1016/j.jcis.2025.02.035. Epub 2025 Feb 7.

Abstract

Electrocatalytic conversion of carbon dioxide (CO) to formate is an effective strategy for converting CO into valuable chemicals. However, synthesizing active catalysts with well-defined heterojunctions and large exposed surfaces remains challenging. Here, we present a one-pot synthesis method for a hybrid sulfide catalyst featuring surfactant-intercalated tin(IV) disulfide (SnS) nanosheets heterojuncted with bismuth(III) sulfide (BiS) needles. The surfactant hexadecyltrimethylammonium bromide (CTAB) plays a vital role in transforming the morphology of the components and the formation of their heterojunction. The resulting catalyst exhibits outstanding performance in reducing CO to formate, demonstrating the high formate Faradaic efficiency (FE) of over 90 % across a wide potential range from -0.8 to -1.3 V (vs. reversible hydrogen electrode (RHE)) and achieving a maximum FE of 97.2 % at -1.1 V (vs. RHE). In contrast, the partial current density of formate reaches about 350 mA cm at -1.35 V (vs. RHE) in the flow cell. Furthermore, the catalyst demonstrated exceptional stability, with a high selectivity towards formate production maintained at a current density of 156 mA cm. Theoretical calculations and in situ Raman indicate that the SnS/BiS heterojunction active sites optimize the free energy for the *H and *OCHO intermediates, thereby facilitating the formation and desorption steps of *HCOOH, ultimately leading to formate yield efficiently. Our investigation offers a strategic method and valuable insights for designing catalytic materials with rich interfaces for efficient CO reduction reactions.

摘要

将二氧化碳(CO₂)电催化转化为甲酸盐是将CO₂转化为有价值化学品的有效策略。然而,合成具有明确异质结和大暴露表面的活性催化剂仍然具有挑战性。在此,我们提出了一种一锅合成法,用于制备一种混合硫化物催化剂,该催化剂具有表面活性剂插层的二硫化锡(SnS₂)纳米片与硫化铋(Bi₂S₃)针状结构形成的异质结。表面活性剂十六烷基三甲基溴化铵(CTAB)在改变组分形态及其异质结的形成中起着至关重要的作用。所得催化剂在将CO₂还原为甲酸盐方面表现出优异的性能,在 -0.8至 -1.3 V(相对于可逆氢电极(RHE))的宽电位范围内显示出超过90%的高甲酸盐法拉第效率(FE),并在 -1.1 V(相对于RHE)时实现了97.2%的最大FE。相比之下,在流动池中,甲酸盐的分电流密度在 -1.35 V(相对于RHE)时达到约350 mA cm⁻²。此外,该催化剂表现出出色的稳定性,在156 mA cm⁻²的电流密度下对甲酸盐生产保持高选择性。理论计算和原位拉曼表明,SnS₂/Bi₂S₃异质结活性位点优化了H和OCHO中间体的自由能,从而促进了*HCOOH的形成和解吸步骤,最终高效地提高了甲酸盐产率。我们的研究为设计具有丰富界面的催化材料以实现高效CO₂还原反应提供了一种策略方法和有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验