Suppr超能文献

在德克萨斯州“关爱社区”基于社区的随机试验中提高新冠病毒检测率和疫苗接种率:适应性地理空间分析

Increasing COVID-19 Testing and Vaccination Uptake in the Take Care Texas Community-Based Randomized Trial: Adaptive Geospatial Analysis.

作者信息

Zhang Kehe, Hunyadi Jocelyn V, de Oliveira Otto Marcia C, Lee Miryoung, Zhang Zitong, Ramphul Ryan, Yamal Jose-Miguel, Yaseen Ashraf, Morrison Alanna C, Sharma Shreela, Rahbar Mohammad Hossein, Zhang Xu, Linder Stephen, Marko Dritana, Roy Rachel White, Banerjee Deborah, Guajardo Esmeralda, Crum Michelle, Reininger Belinda, Fernandez Maria E, Bauer Cici

机构信息

Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler St., RAS-E819, Houston, TX, 77030, United States, 1 7135009581.

Center for Spatial-Temporal Modeling for Applications in Population Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States.

出版信息

JMIR Form Res. 2025 Feb 11;9:e62802. doi: 10.2196/62802.

Abstract

BACKGROUND

Geospatial data science can be a powerful tool to aid the design, reach, efficiency, and impact of community-based intervention trials. The project titled Take Care Texas aims to develop and test an adaptive, multilevel, community-based intervention to increase COVID-19 testing and vaccination uptake among vulnerable populations in 3 Texas regions: Harris County, Cameron County, and Northeast Texas.

OBJECTIVE

We aimed to develop a novel procedure for adaptive selections of census block groups (CBGs) to include in the community-based randomized trial for the Take Care Texas project.

METHODS

CBG selection was conducted across 3 Texas regions over a 17-month period (May 2021 to October 2022). We developed persistent and recent COVID-19 burden metrics, using real-time SARS-CoV-2 monitoring data to capture dynamic infection patterns. To identify vulnerable populations, we also developed a CBG-level community disparity index, using 12 contextual social determinants of health (SDOH) measures from US census data. In each adaptive round, we determined the priority CBGs based on their COVID-19 burden and disparity index, ensuring geographic separation to minimize intervention "spillover." Community input and feedback from local partners and health workers further refined the selection. The selected CBGs were then randomized into 2 intervention arms-multilevel intervention and just-in-time adaptive intervention-and 1 control arm, using covariate adaptive randomization, at a 1:1:1 ratio. We developed interactive data dashboards, which included maps displaying the locations of selected CBGs and community-level information, to inform the selection process and guide intervention delivery. Selection and randomization occurred across 10 adaptive rounds.

RESULTS

A total of 120 CBGs were selected and followed the stepped planning and interventions, with 60 in Harris County, 30 in Cameron County, and 30 in Northeast Texas counties. COVID-19 burden presented substantial temporal changes and local variations across CBGs. COVID-19 burden and community disparity exhibited some common geographical patterns but also displayed distinct variations, particularly at different time points throughout this study. This underscores the importance of incorporating both real-time monitoring data and contextual SDOH in the selection process.

CONCLUSIONS

The novel procedure integrated real-time monitoring data and geospatial data science to enhance the design and adaptive delivery of a community-based randomized trial. Adaptive selection effectively prioritized the most in-need communities and allowed for a rigorous evaluation of community-based interventions in a multilevel trial. This methodology has broad applicability and can be adapted to other public health intervention and prevention programs, providing a powerful tool for improving population health and addressing health disparities.

摘要

背景

地理空间数据科学可以成为一个强大的工具,有助于基于社区的干预试验的设计、覆盖范围、效率和影响。名为“关爱德克萨斯”的项目旨在开发并测试一种适应性强、多层次、基于社区的干预措施,以提高德克萨斯州三个地区(哈里斯县、卡梅伦县和德克萨斯州东北部)弱势群体中的新冠病毒检测率和疫苗接种率。

目的

我们旨在开发一种新颖的程序,用于适应性选择人口普查街区组(CBG),以纳入“关爱德克萨斯”项目的基于社区的随机试验。

方法

在17个月的时间里(2021年5月至2022年10月),在德克萨斯州的三个地区进行了CBG选择。我们利用实时严重急性呼吸综合征冠状病毒2(SARS-CoV-2)监测数据来捕捉动态感染模式,制定了持续和近期的新冠病毒负担指标。为了确定弱势群体,我们还利用美国人口普查数据中的12项健康环境社会决定因素(SDOH)指标,制定了一个CBG层面的社区差异指数。在每一轮适应性选择中,我们根据CBG的新冠病毒负担和差异指数确定优先街区组,确保地理上的分隔,以尽量减少干预“溢出”。来自当地合作伙伴和卫生工作者的社区意见和反馈进一步完善了选择。然后,使用协变量自适应随机化方法,以1:1:1的比例将选定的CBG随机分为两个干预组——多层次干预组和及时自适应干预组——以及一个对照组。我们开发了交互式数据仪表板,其中包括显示选定CBG位置和社区层面信息的地图,以告知选择过程并指导干预措施的实施。选择和随机化过程分10轮适应性选择进行。

结果

总共选择了120个CBG,并遵循逐步规划和干预措施,其中哈里斯县60个,卡梅伦县30个,德克萨斯州东北部各县30个。CBG中的新冠病毒负担呈现出显著的时间变化和局部差异。新冠病毒负担和社区差异呈现出一些共同的地理模式,但也表现出明显的差异,特别是在本研究的不同时间点。这突出了在选择过程中纳入实时监测数据和环境SDOH的重要性。

结论

这种新颖的程序整合了实时监测数据和地理空间数据科学,以加强基于社区的随机试验的设计和适应性实施。适应性选择有效地确定了最需要帮助的社区的优先级,并允许在多层次试验中对基于社区的干预措施进行严格评估。这种方法具有广泛的适用性,可以适用于其他公共卫生干预和预防项目,为改善人群健康和解决健康差异提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e3/11835599/77d9c7227234/formative-v9-e62802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验