Weilhard Andreas, Popov Ilya, Kohlrausch Emerson C, Aliev Gazi N, Blankenship L Scott, Norman Luke T, Ghaderzadeh Sadegh, Smith Louise, Isaacs Mark, O'Shea James, Lanterna Anabel E, Theis Wolfgang, Morgan David, Hutchings Graham J, Besley Elena, Khlobystov Andrei N, Alves Fernandes Jesum
School of Chemistry, University of Nottingham NG7 2RD Nottingham UK
School of Physics & Astronomy, University of Birmingham B15 2TT Birmingham UK.
Chem Sci. 2025 Feb 4;16(11):4851-4859. doi: 10.1039/d4sc08253b. eCollection 2025 Mar 12.
The efforts to increase the active surface area of catalysts led to reduction of metal particle size, down to single metal atoms. This results in increasing importance of support-metal interactions. We demonstrate the mechanisms through which the support influences catalytic activity of nanoclusters: the support electronics, described by the O 2p energy level, and the support surface chemistry, determined by the density of Lewis base sites. Using Ru nanoclusters, our study shows that these parameters can be effectively captured within a single catalyst support descriptor (CSD). The apparent activation energy and turnover frequency (TOF) for the ammonia synthesis correlates strongly with CSD measured for the series Ru/MgO, Ru/ScO, Ru/CeO, Ru/LaO, and Ru/YO. Furthermore, the study demonstrates that CSD correlates linearly with the binding strength of N-Ru in nanocluster, thereby providing a direct link between the catalyst's surface chemistry and the nature of the support. The catalyst support descriptor developed in this study serves as a simple yet powerful tool for selecting the optimal support material to maximise the activity of metal nanoclusters without altering the metal itself.
增加催化剂活性表面积的努力导致金属颗粒尺寸减小,直至单金属原子。这使得载体与金属相互作用的重要性日益增加。我们展示了载体影响纳米团簇催化活性的机制:由O 2p能级描述的载体电子性质,以及由路易斯碱位密度决定的载体表面化学性质。通过使用钌纳米团簇,我们的研究表明,这些参数可以在单一的催化剂载体描述符(CSD)中得到有效体现。氨合成的表观活化能和周转频率(TOF)与Ru/MgO、Ru/ScO、Ru/CeO、Ru/LaO和Ru/YO系列所测得的CSD密切相关。此外,该研究表明,CSD与纳米团簇中N-Ru的结合强度呈线性相关,从而在催化剂的表面化学性质与载体性质之间建立了直接联系。本研究中开发的催化剂载体描述符是一种简单而强大的工具,可用于选择最佳载体材料,在不改变金属本身的情况下最大化金属纳米团簇的活性。