Suppr超能文献

氢负离子在钌基氨合成催化剂中的重要作用。

Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts.

作者信息

Kitano Masaaki, Inoue Yasunori, Ishikawa Hiroki, Yamagata Kyosuke, Nakao Takuya, Tada Tomofumi, Matsuishi Satoru, Yokoyama Toshiharu, Hara Michikazu, Hosono Hideo

机构信息

Materials Research Center for Element Strategy , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan . Email:

Laboratory for Materials and Structures , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan . Email:

出版信息

Chem Sci. 2016 Jul 1;7(7):4036-4043. doi: 10.1039/c6sc00767h. Epub 2016 Apr 21.

Abstract

The efficient reduction of atmospheric nitrogen to ammonia under low pressure and temperature conditions has been a challenge in meeting the rapidly increasing demand for fertilizers and hydrogen storage. Here, we report that CaN:e, a two-dimensional electride, combined with ruthenium nanoparticles (Ru/CaN:e) exhibits efficient and stable catalytic activity down to 200 °C. This catalytic performance is due to [CaN]·eH formed by a reversible reaction of an anionic electron with hydrogen (CaN:e + H ↔ [CaN]·eH ) during ammonia synthesis. The simplest hydride, CaH, with Ru also exhibits catalytic performance comparable to Ru/CaN:e. The resultant electrons in these hydrides have a low work function of 2.3 eV, which facilitates the cleavage of N molecules. The smooth reversible exchangeability between anionic electrons and H ions in hydrides at low temperatures suppresses hydrogen poisoning of the Ru surfaces. The present work demonstrates the high potential of metal hydrides as efficient promoters for low-temperature ammonia synthesis.

摘要

在低压和低温条件下将大气中的氮高效还原为氨一直是满足对肥料和储氢迅速增长需求的一项挑战。在此,我们报道二维电子化合物CaN:e与钌纳米颗粒(Ru/CaN:e)相结合,在低至200°C时仍表现出高效且稳定的催化活性。这种催化性能归因于在氨合成过程中,阴离子电子与氢发生可逆反应形成的[CaN]·eH(CaN:e + H ↔ [CaN]·eH )。最简单的氢化物CaH与Ru结合也表现出与Ru/CaN:e相当的催化性能。这些氢化物中产生的电子具有2.3 eV的低功函数,这有利于N分子的裂解。低温下氢化物中阴离子电子与H离子之间平滑的可逆交换性抑制了Ru表面的氢中毒。本工作证明了金属氢化物作为低温氨合成高效促进剂的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfd/6013784/5fa57f46022c/c6sc00767h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验