Suppr超能文献

医疗综合研究数据库中与国家死亡索引相比的死亡率数据源验证

Validation of Mortality Data Sources Compared to the National Death Index in the Healthcare Integrated Research Database.

作者信息

Jamal-Allial Aziza, Sponholtz Todd, Vojjala Shiva K, Paullin Mark, Papazian Anahit, Eshete Biruk, Mahmoudpour Seyed Hamidreza, Verpillat Patrice, Beachler Daniel C

机构信息

Safety & Epidemiology, Carelon Research, Newton, MA, USA.

Safety & Epidemiology, Carelon Research, Wilmington, DE, USA.

出版信息

Pragmat Obs Res. 2025 Feb 7;16:19-25. doi: 10.2147/POR.S498221. eCollection 2025.

Abstract

BACKGROUND

The National Death Index (NDI) is the gold standard for mortality data in the United States (US) but has a time lag and can be operationally intensive. This validation study assesses the accuracy of various mortality data sources with the NDI.

METHODS

This validation study is a secondary analysis of an advanced cancer cohort in the US between January 2010 and December 2018, with an established NDI linkage. Mortality data sources, inpatient discharge, disenrollment, death master file (DMF), Center for Medicare and Medicaid Services (CMS), Utilization management data (U.M.), and online obituary data were compared to NDI.

RESULTS

Among 40,692 patients, 25,761 (63.3%) had a death date using NDI; the composite algorithm had a sensitivity of 88.9% (95% CI = 88.5%, 89.3%), specificity was 89.1% (95% CI = 88.6%, 89.6%). At the same time, positive predictive value (PPV) was 93.4% (95% CI = 93.1%, 93.7%), negative predictive value (NPV) was 82.3% (95% CI = 81.7%, 82.9%), and when comparing each individual source, each had a high PPV but limited sensitivity.

CONCLUSION

The composite algorithm was demonstrated to be a sensitive and precise measure of mortality, while individual database sources were accurate but had limited sensitivity.

摘要

背景

美国国家死亡指数(NDI)是美国死亡率数据的金标准,但存在时间滞后且操作可能较为繁琐。本验证研究评估了各种死亡率数据源与NDI的准确性。

方法

本验证研究是对2010年1月至2018年12月期间美国一个晚期癌症队列的二次分析,已建立NDI链接。将死亡率数据源、住院出院、退保、死亡主文件(DMF)、医疗保险和医疗补助服务中心(CMS)、利用管理数据(U.M.)以及在线讣告数据与NDI进行比较。

结果

在40,692名患者中,25,761名(63.3%)使用NDI确定了死亡日期;综合算法的灵敏度为88.9%(95%置信区间 = 88.5%,89.3%),特异度为89.1%(95%置信区间 = 88.6%,89.6%)。同时,阳性预测值(PPV)为93.4%(95%置信区间 = 93.1%,93.7%),阴性预测值(NPV)为82.3%(95%置信区间 = 81.7%,82.9%),并且在比较每个单独的数据源时,每个数据源的PPV都很高,但灵敏度有限。

结论

综合算法被证明是一种敏感且精确的死亡率测量方法,而单个数据库来源准确但灵敏度有限。

相似文献

本文引用的文献

2
Categorization of COVID-19 severity to determine mortality risk.COVID-19 严重程度分类以确定死亡风险。
Pharmacoepidemiol Drug Saf. 2022 Jul;31(7):721-728. doi: 10.1002/pds.5436. Epub 2022 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验