Suppr超能文献

验证美国疾病控制与预防中心国家死亡指数死亡率数据,重点关注种族和民族差异。

Validation of US CDC National Death Index mortality data, focusing on differences in race and ethnicity.

机构信息

Mid-Atlantic Permanente Research Institute, Mid-Atlantic Permanente Medical Group, Rockville, Maryland, USA

Mid-Atlantic Permanente Research Institute, Mid-Atlantic Permanente Medical Group, Rockville, Maryland, USA.

出版信息

BMJ Health Care Inform. 2023 Jul;30(1). doi: 10.1136/bmjhci-2023-100737.

Abstract

OBJECTIVES

The US Center for Disease Control and Prevention's National Death Index (NDI) is a gold standard for mortality data, yet matching patients to the database depends on accurate and available key identifiers. Our objective was to evaluate NDI data for future healthcare research studies with mortality outcomes.

METHODS

We used a Kaiser Permanente Mid-Atlantic States' Virtual Data Warehouse (KPMAS-VDW) sourced from the Social Security Administration and electronic health records on members enrolled between 1 January 2005 to 31 December 2017. We submitted data to NDI on 1 036 449 members. We compared results from the NDI best match algorithm to the KPMAS-VDW for vital status and death date. We compared probabilistic scores by sex and race and ethnicity.

RESULTS

NDI returned 372 865 (36%) unique possible matches, 663 061 (64%) records not matched to the NDI database and 522 (<1%) rejected records. The NDI algorithm resulted in 38 862 records, presumed dead, with a lower percentage of women, and Asian/Pacific Islander and Hispanic people than presumed alive. There were 27 306 presumed dead members whose death dates matched exactly between the NDI results and VDW, but 1539 did not have an exact match. There were 10 017 additional deaths from NDI results that were not present in the VDW death data.

CONCLUSIONS

NDI data can substantially improve the overall capture of deaths. However, further quality control measures were needed to ensure the accuracy of the NDI best match algorithm.

摘要

目的

美国疾病控制与预防中心的国家死亡索引(NDI)是死亡数据的黄金标准,但将患者与数据库匹配取决于准确和可用的关键标识符。我们的目标是评估 NDI 数据,以用于未来具有死亡结局的医疗保健研究。

方法

我们使用了凯撒永久医疗集团中大西洋州虚拟数据仓库(KPMAS-VDW),该数据来自社会保障管理局和 2005 年 1 月 1 日至 2017 年 12 月 31 日期间登记的成员的电子健康记录。我们向 NDI 提交了 1036449 名成员的数据。我们将 NDI 最佳匹配算法的结果与 KPMAS-VDW 的生命状态和死亡日期进行了比较。我们按性别和种族和民族比较了概率得分。

结果

NDI 返回了 372865(36%)个唯一的可能匹配项、663061(64%)个未与 NDI 数据库匹配的记录和 522(<1%)个被拒绝的记录。NDI 算法导致 38862 条记录被假定死亡,其中女性和亚裔/太平洋岛民和西班牙裔的比例较低。有 27306 名被假定死亡的成员的死亡日期与 NDI 结果和 VDW 完全匹配,但 1539 名成员没有完全匹配。NDI 结果中有 10017 例额外的死亡未出现在 VDW 死亡数据中。

结论

NDI 数据可以大大提高死亡的整体捕获率。然而,需要进一步的质量控制措施来确保 NDI 最佳匹配算法的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa14/10335466/1bc3ea12cd85/bmjhci-2023-100737f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验