Suppr超能文献

金属污染——一个全球性环境问题:来源、影响及缓解进展

Metal contamination - a global environmental issue: sources, implications & advances in mitigation.

作者信息

Ondrasek Gabrijel, Shepherd Jonti, Rathod Santosha, Dharavath Ramesh, Rashid Muhammad Imtiaz, Brtnicky Martin, Shahid Muhammad Shafiq, Horvatinec Jelena, Rengel Zed

机构信息

Faculty of Agriculture, The University of Zagreb 10000 Zagreb Croatia

ICAR-Indian Institute of Rice Research Hyderabad 500030 India.

出版信息

RSC Adv. 2025 Feb 11;15(5):3904-3927. doi: 10.1039/d4ra04639k. eCollection 2025 Jan 29.

Abstract

Metal contamination (MC) is a growing environmental issue, with metals altering biotic and metabolic pathways and entering the human body through contaminated food, water and inhalation. With continued population growth and industrialisation, MC poses an exacerbating risk to human health and ecosystems. Metal contamination in the environment is expected to continue to increase, requiring effective remediation approaches and harmonised monitoring programmes to significantly reduce the impact on health and the environment. Bio-based methods, such as enhanced phytoextraction and chemical stabilisation, are being used worldwide to remediate contaminated sites. A systematic plant screening of potential metallophytes can identify the most effective candidates for phytoremediation. However, the detection and prediction of MC is complex, non-linear and chaotic, and it frequently overlaps with various other constraints. Rapidly evolving artificial intelligence (AI) algorithms offer promising tools for the detection, growth and activity modelling and management of metallophytes, helping to fill knowledge gaps related to complex metal-environment interactions in different scenarios. By integrating AI with advanced sensor technologies and field-based trials, future research could revolutionize remediation strategies. This interdisciplinary approach holds immense potential in mitigating the detrimental impacts of metal contamination efficiently and sustainably.

摘要

金属污染(MC)是一个日益严重的环境问题,金属会改变生物和代谢途径,并通过受污染的食物、水和吸入进入人体。随着人口持续增长和工业化进程的推进,金属污染对人类健康和生态系统构成了日益加剧的风险。预计环境中的金属污染将继续增加,这就需要有效的修复方法和统一的监测计划,以显著降低对健康和环境的影响。生物基方法,如强化植物提取和化学稳定化,正在全球范围内用于修复受污染场地。对潜在金属植物进行系统的植物筛选可以确定用于植物修复的最有效候选植物。然而,金属污染的检测和预测是复杂、非线性和混沌的,并且它经常与各种其他限制因素重叠。快速发展的人工智能(AI)算法为金属植物的检测、生长和活动建模及管理提供了有前景的工具,有助于填补不同场景下与复杂金属-环境相互作用相关的知识空白。通过将人工智能与先进的传感器技术和实地试验相结合,未来的研究可能会彻底改变修复策略。这种跨学科方法在有效且可持续地减轻金属污染的有害影响方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9548/11811701/a54aa75c4852/d4ra04639k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验