Dhara Debashis, Mulard Laurence A, Hollenstein Marcel
Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
Chem Soc Rev. 2025 Mar 17;54(6):2948-2983. doi: 10.1039/d4cs00799a.
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
遗传信息在DNA中的存储是通过标准碱基对的独特排列实现的。然而,在没有对双链形成至关重要的糖磷酸骨架的情况下,这是不可能的。虽然已经鉴定出一百多种核碱基修饰(主要在RNA中),但在(脱氧)核糖糖部分的改变方面,自然界相当保守。这种趋势在核酸的合成类似物中并未体现,在核酸合成类似物中,糖实体的修饰很常见,目的是改善DNA和RNA的性质。在这篇综述文章中,我们描述了核酸中糖修饰背后的主要动机,并强调了该领域的最新进展,特别关注治疗应用、异种核酸(XNA)的开发以及对核酸病因的探究。我们还描述了将碳水化合物和寡糖与寡核苷酸缀合的最新策略,因为这是提高寡核苷酸药物治疗指数的一种特别有效的策略。糖基化RNA的出现以及核酸和碳水化合物化学、蛋白质工程和递送方法的进展,无疑将产生更有效的糖修饰核酸,用于治疗、生物技术和合成生物学应用。