Suppr超能文献

应用机器学习方法估算某些固体药物在超临界二氧化碳中的溶解度。

Application of machine learning approach to estimate the solubility of some solid drugs in supercritical CO.

作者信息

Bahrami Zahra, Bashipour Fatemeh, Baghban Alireza

机构信息

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, 67149-67346, Iran.

Process engineering department, National Iranian South Oilfields Company (NISOC), Ahvaz, Iran.

出版信息

Sci Rep. 2025 Feb 12;15(1):5192. doi: 10.1038/s41598-025-89858-5.

Abstract

Accurate estimation of the solubility of solid drugs (SDs) in the supercritical carbon dioxide (SC-CO) plays an essential role in the related technologies. In this study, artificial intelligence models (AIMs) by gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied to estimate the solubility of SDs in SC-CO. Hence, a comprehensive database (1816 datasets) comprising operational conditions (T, P) in the wide ranges (308-348.2 K and 80-400 bar), SD's molecular weight (MW), and melting point (MP) were gathered. Investigation analysis of the models' strength showed that the model developed by ANFIS exhibited a more satisfactory approximation than the GEP model. According to the optimized ANFIS model, statistical parameters of R, RMSE, MAE, and AARD% were obtained, equivalent to 0.991, 0.260, 0.167, and 13.890% for training and 0.990, 0.256, 0.157, and 15.273% for validation, in that order. Sensitivity analysis showed that the highest effect of independent variables on calculating SDs solubility in SC-CO belong to MW, P, MP, and T, respectively. Therefore, MW is a key factor for modeling the solubility of various SDs in SC-CO. Comparing the estimated results obtained from the optimized AIM with previous semi-empirical models showed that the AIMs could be more accurate in modeling the solubility of SDs in SC-CO.

摘要

准确估算固体药物(SDs)在超临界二氧化碳(SC-CO₂)中的溶解度在相关技术中起着至关重要的作用。在本研究中,应用了基于基因表达式编程(GEP)和自适应神经模糊推理系统(ANFIS)方法的人工智能模型(AIMs)来估算SDs在SC-CO₂中的溶解度。因此,收集了一个综合数据库(1816个数据集),该数据库包含宽范围(308 - 348.2 K和80 - 400 bar)的操作条件(T、P)、SDs的分子量(MW)和熔点(MP)。对模型强度的调查分析表明,ANFIS开发的模型比GEP模型表现出更令人满意的近似度。根据优化后的ANFIS模型,得到的统计参数R、RMSE、MAE和AARD%,训练时依次为0.991、0.260、0.167和13.890%,验证时依次为0.990、0.256、0.157和15.273%。敏感性分析表明,自变量对计算SDs在SC-CO₂中溶解度的最高影响分别属于MW、P、MP和T。因此,MW是模拟各种SDs在SC-CO₂中溶解度的关键因素。将优化后的AIM得到的估算结果与先前的半经验模型进行比较表明,AIMs在模拟SDs在SC-CO₂中的溶解度方面可能更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验