Suppr超能文献

用机器学习方法测定硫酸吗啡抗痛药物在超临界二氧化碳中的溶解度。

Determination of morphine sulfate anti-pain drug solubility in supercritical CO with machine learning method.

作者信息

Sodeifian Gholamhossein, Hsieh Chieh-Ming, Masihpour Farnoush, Tabibzadeh Amirmuhammad, Jiang Rui-Heng, Cheng Ya-Hung

机构信息

Department of Chemical Engineering, Faculty of Engineering, Laboratory of Supercritical Fluids and Nanotechnology, and Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.

Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan.

出版信息

Sci Rep. 2024 Sep 27;14(1):22370. doi: 10.1038/s41598-024-73543-0.

Abstract

Accurate solute solubility measuring and modeling in supercritical carbon dioxide (ScCO) would address the best working conditions and thermodynamic boundaries for material processing with this type of fluid. Theory- and data-driven methods are two general modeling approaches. Using theory-driven methods, the solubility is estimated based on the principles of thermodynamics, while data-driven methods are developed by training the algorithms. Despite acceptance of each of these methods, more experimental solubility data are still needed to promote modeling performances. In this study, for the first time, solubility of morphine sulfate is determined and modeled by a set of 13 semi-empirical (theory-driven) and random forest (data-driven) models. Using a laboratory system with an ultraviolet-visible (UV-Vis) spectroscopy, the experimental solubilities including 48 data points were obtained at different temperatures (308-338 K) and pressures (12-27 MPa). The minimum (0.806 × 10) and maximum (5.902 × 10) equilibrium mole fractions were observed at working pressures of 12 and 27 MPa, respectively, both at the same temperature of 338 K. It was indicated that random forest model (with AARD% of 1.29%) had an excellent predictive performance against semi-empirical models (with AARD% from 9.33 to 19.76%). The results showed that solute molecular weight had the highest effect on random forest modeling. Using modeling results from Chrastil and Bartle models, total and vaporization enthalpies of dissolution of morphine sulfate in ScCO were found to be 35.12 and 59.04 kJ/mole, respectively.

摘要

准确测量和模拟溶质在超临界二氧化碳(ScCO₂)中的溶解度,将有助于确定使用这类流体进行材料加工的最佳工作条件和热力学边界。理论驱动和数据驱动方法是两种常见的建模方法。使用理论驱动方法时,溶解度是根据热力学原理估算的,而数据驱动方法则是通过训练算法来开发的。尽管这两种方法都已被接受,但仍需要更多的实验溶解度数据来提升建模性能。在本研究中,首次使用一组13个半经验(理论驱动)模型和随机森林(数据驱动)模型来测定和模拟硫酸吗啡的溶解度。通过一个配备紫外可见(UV-Vis)光谱仪的实验室系统,在不同温度(308 - 338 K)和压力(12 - 27 MPa)下获得了包括48个数据点的实验溶解度。在相同温度338 K下,分别在12 MPa和27 MPa的工作压力下观察到了最小(0.806×10⁻⁵)和最大(5.902×10⁻⁵)平衡摩尔分数。结果表明,随机森林模型(平均绝对相对偏差百分比为1.29%)相对于半经验模型(平均绝对相对偏差百分比为9.33%至19.76%)具有出色的预测性能。结果显示,溶质分子量对随机森林建模的影响最大。利用Chrastil模型和Bartle模型的建模结果,发现硫酸吗啡在ScCO₂中的溶解总焓和蒸发焓分别为35.12 kJ/mol和59.04 kJ/mol。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca3/11437171/0ab8fd70cfe7/41598_2024_73543_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验