Suppr超能文献

基于桥本甲状腺炎结节人工智能模型的甲状腺结节合并桥本甲状腺炎多中心诊断研究

A multicenter diagnostic study of thyroid nodule with Hashimoto's thyroiditis enabled by Hashimoto's thyroiditis nodule-artificial intelligence model.

作者信息

Chen Chen, Zhou Yahan, Xu Bo, Zhou Lingyan, Song Mei, Yuan Shengxing, Yue Wenwen, Zhou Yibo, Chen Hangjun, Yan Ruyi, Xiao Benlong, Jiang Tian, Zhang Qi, Zhao Shanshan, Xu Changsong, Xu Chenke, Lu Jiao, Sui Lin, Yan Yuqi, Lyu Mingshun, He Qingquan, Wang Vicky Yang, Xu Dong

机构信息

Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.

Center of Intelligent Diagnosis and Therapy (Taizhou), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Taizhou, China.

出版信息

Eur Radiol. 2025 Feb 13. doi: 10.1007/s00330-025-11422-6.

Abstract

OBJECTIVE

This study aimed to develop a Hashimoto's thyroiditis nodule-artificial intelligence (HTN-AI) model to optimize the diagnosis of thyroid nodules with Hashimoto's thyroiditis (HT) of which the efficiency and accuracy remain challenging.

DESIGN AND METHODS

This study included 5709 patients from 10 hospitals between January 2014 and March 2024. Among them, 5053 thyroid nodules were divided into training and testing sets in a 9:1 ratio. Then, we tested the model on an external dataset (n = 432). Finally, we prospectively recruited 224 patients with dynamic ultrasound videos acquired and employed the HTN-AI model to identify nodules from the dynamic ultrasound videos. Radiologists of varying seniority performed the categorization of thyroid nodules as benign and malignant, both with and without the assistance of the HTN-AI model, and their diagnostic performances were compared.

RESULTS

The results indicated that for the external testing set, the HTN-AI model achieved a Dice similarity coefficient (DSC) of 0.91, outperforming several other common convolutional neural network (CNN) models. Specifically, the DSCs of the HTN-AI model were similar for thyroid nodule patients with and without HT which were 0.91 ± 0.06 and 0.91 ± 0.09. Moreover, when the HTN-AI model was used to assist diagnosis, it demonstrated an improvement in the diagnostic performance of radiologists. The diagnostic areas under the receiver operating characteristic curve (AUCs) of the junior radiologists increased from 0.59, 0.59, and 0.57 to 0.68, 0.65, and 0.65.

CONCLUSIONS

This research demonstrates that the HTN-AI model has excellent performance in identifying thyroid nodules associated with HT and can assist radiologists with more accurate and efficient diagnoses of thyroid nodules.

KEY POINTS

Question The study developed an HTN-AI model aimed at assisting in the diagnosis of thyroid nodules in patients with HT. Findings The HTN-AI model achieved great performance with a Dice similarity coefficient (DSC) of 0.91, and consistent performance across patients with and without HT. Clinical relevance The HTN-AI model enhances the accuracy and efficiency of thyroid nodule diagnosis, particularly in patients with HT. By assisting radiologists at varying experience levels, this model supports improved decision-making in the management of thyroid nodules.

摘要

目的

本研究旨在开发一种桥本甲状腺炎结节人工智能(HTN-AI)模型,以优化对桥本甲状腺炎(HT)合并甲状腺结节的诊断,目前其诊断效率和准确性仍具有挑战性。

设计与方法

本研究纳入了2014年1月至2024年3月期间来自10家医院的5709例患者。其中,5053个甲状腺结节按9:1的比例分为训练集和测试集。然后,我们在一个外部数据集(n = 432)上对该模型进行测试。最后,我们前瞻性招募了224例有动态超声视频的患者,并使用HTN-AI模型从动态超声视频中识别结节。不同资历的放射科医生在有无HTN-AI模型辅助的情况下,对甲状腺结节进行良恶性分类,并比较他们的诊断性能。

结果

结果表明,对于外部测试集,HTN-AI模型的骰子相似系数(DSC)达到0.91,优于其他几种常见的卷积神经网络(CNN)模型。具体而言,HTN-AI模型在有HT和无HT的甲状腺结节患者中的DSC相似,分别为0.91±0.06和0.91±0.09。此外,当使用HTN-AI模型辅助诊断时,放射科医生的诊断性能有所提高。初级放射科医生在接受者操作特征曲线(AUC)下的诊断面积从0.59、0.59和0.57分别增加到0.68、0.65和0.65。

结论

本研究表明,HTN-AI模型在识别与HT相关的甲状腺结节方面具有优异性能,可协助放射科医生更准确、高效地诊断甲状腺结节。

要点

问题 本研究开发了一种HTN-AI模型,旨在协助诊断HT患者的甲状腺结节。发现 HTN-AI模型表现出色,骰子相似系数(DSC)为0.91,在有HT和无HT的患者中表现一致。临床意义 HTN-AI模型提高了甲状腺结节诊断的准确性和效率,尤其是在HT患者中。通过协助不同经验水平的放射科医生,该模型有助于改善甲状腺结节管理中的决策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验