West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China; West China Hospital-SenseTime Joint Lab, Chengdu, Sichuan 610041, China.
West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China; West China Hospital-SenseTime Joint Lab, Chengdu, Sichuan 610041, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China.
Med Image Anal. 2022 Jul;79:102443. doi: 10.1016/j.media.2022.102443. Epub 2022 Apr 25.
Thyroid nodule segmentation and classification in ultrasound images are two essential but challenging tasks for computer-aided diagnosis of thyroid nodules. Since these two tasks are inherently related to each other and sharing some common features, solving them jointly with multi-task leaning is a promising direction. However, both previous studies and our experimental results confirm the problem of inconsistent predictions among these related tasks. In this paper, we summarize two types of task inconsistency according to the relationship among different tasks: intra-task inconsistency between homogeneous tasks (e.g., both tasks are pixel-wise segmentation tasks); and inter-task inconsistency between heterogeneous tasks (e.g., pixel-wise segmentation task and categorical classification task). To address the task inconsistency problems, we propose intra- and inter-task consistent learning on top of the designed multi-stage and multi-task learning network to enforce the network learn consistent predictions for all the tasks during network training. Our experimental results based on a large clinical thyroid ultrasound image dataset indicate that the proposed intra- and inter-task consistent learning can effectively eliminate both types of task inconsistency and thus improve the performance of all tasks for thyroid nodule segmentation and classification.
甲状腺结节的超声图像分割和分类是甲状腺结节计算机辅助诊断中两个非常重要但极具挑战性的任务。由于这两个任务本质上是相互关联的,并且具有一些共同的特征,因此使用多任务学习联合解决它们是一个很有前途的方向。然而,之前的研究和我们的实验结果都证实了这些相关任务之间预测结果不一致的问题。在本文中,我们根据不同任务之间的关系总结了两种类型的任务不一致性:同质任务之间的任务内不一致性(例如,两个任务都是像素级分割任务);以及异质任务之间的任务间不一致性(例如,像素级分割任务和类别分类任务)。为了解决任务不一致性问题,我们在设计的多阶段多任务学习网络之上提出了任务内和任务间一致性学习,以在网络训练过程中强制网络对所有任务学习一致的预测。我们基于一个大型临床甲状腺超声图像数据集的实验结果表明,所提出的任务内和任务间一致性学习可以有效地消除这两种类型的任务不一致性,从而提高甲状腺结节分割和分类的所有任务的性能。