Suppr超能文献

HDAC1 和 HDAC2 之间的附带致死作用利用了癌症特异性 NuRD 复合物的脆弱性。

Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities.

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.

Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.

出版信息

Nat Struct Mol Biol. 2023 Aug;30(8):1160-1171. doi: 10.1038/s41594-023-01041-4. Epub 2023 Jul 24.

Abstract

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.

摘要

转录共调节因子已被广泛用作破坏致癌基因调控程序的靶点。然而,该靶点类别中的许多蛋白质对细胞存活普遍是必需的,这限制了它们的治疗窗口。在这里,我们揭示了组蛋白去乙酰化酶 1 (HDAC1) 和 HDAC2 之间的遗传相互作用,其中每个同源物与另一个同源物的杂合缺失都是合成致死的。这种反复发生的染色体缺失导致了多种实体瘤和血液恶性肿瘤的发生,包括神经母细胞瘤和多发性骨髓瘤,从而导致了这种旁系合成致死性。通过遗传干扰或 dTAG 介导的降解,我们表明靶向 HDAC2 可抑制体外和体内缺乏 HDAC1 的神经母细胞瘤的生长。从机制上讲,我们发现这些细胞中 HDAC2 的靶向降解会促使核小体重塑和去乙酰化酶 (NuRD) 复合物的几个成员降解,导致基因组中 HDAC2-NuRD 结合位点的染色质可及性降低,并损害增强子相关转录的控制。此外,我们发现几种降解的 NuRD 复合物亚基是神经母细胞瘤和多发性骨髓瘤的依赖性,这为开发针对 HDAC1 或 HDAC2 的同功酶选择性降解剂提供了动力,这些降解剂可以利用 HDAC1/2 的合成致死性来靶向 NuRD 易损性。总之,我们将 HDAC1/2 旁系合成致死性确定为一种潜在的治疗靶点,并揭示了一种针对与 NuRD 相关的癌症依赖性的未被探索的机制。

相似文献

10
Expression, purification and characterization of the human MTA2-RBBP7 complex.人 MTA2-RBBP7 复合物的表达、纯化和表征。
Biochim Biophys Acta Proteins Proteom. 2017 May;1865(5):531-538. doi: 10.1016/j.bbapap.2017.02.002. Epub 2017 Feb 4.

引用本文的文献

2
Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations.UM171与KBTBD4新形态癌症突变的汇聚机制
Nature. 2025 Mar;639(8053):241-249. doi: 10.1038/s41586-024-08533-3. Epub 2025 Feb 12.
5
Pharmacological targeting of the cancer epigenome.癌症表观基因组的药物靶向治疗。
Nat Cancer. 2024 Jun;5(6):844-865. doi: 10.1038/s43018-024-00777-2. Epub 2024 Jun 27.
7
Lineage-Selective Dependencies in Pediatric Cancers.儿童癌症中的谱系选择性依赖性
Cold Spring Harb Perspect Med. 2025 Apr 1;15(4):a041573. doi: 10.1101/cshperspect.a041573.
8
Developmental origins shape the paediatric cancer genome.发育起源塑造儿科癌症基因组。
Nat Rev Cancer. 2024 Jun;24(6):382-398. doi: 10.1038/s41568-024-00684-9. Epub 2024 May 2.

本文引用的文献

3
A NuRD for all seasons.四季皆宜的 NuRD。
Trends Biochem Sci. 2023 Jan;48(1):11-25. doi: 10.1016/j.tibs.2022.06.002. Epub 2022 Jul 4.
4
Selectivity through Targeted Protein Degradation (TPD).通过靶向蛋白降解(TPD)实现选择性。
J Med Chem. 2022 Jun 23;65(12):8113-8126. doi: 10.1021/acs.jmedchem.2c00397. Epub 2022 Jun 3.
8
Chemo-proteomics exploration of HDAC degradability by small molecule degraders.通过小分子降解剂对 HDAC 降解能力的化学生物组学探索。
Cell Chem Biol. 2021 Oct 21;28(10):1514-1527.e4. doi: 10.1016/j.chembiol.2021.07.002. Epub 2021 Jul 26.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验