Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
Nat Struct Mol Biol. 2023 Aug;30(8):1160-1171. doi: 10.1038/s41594-023-01041-4. Epub 2023 Jul 24.
Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.
转录共调节因子已被广泛用作破坏致癌基因调控程序的靶点。然而,该靶点类别中的许多蛋白质对细胞存活普遍是必需的,这限制了它们的治疗窗口。在这里,我们揭示了组蛋白去乙酰化酶 1 (HDAC1) 和 HDAC2 之间的遗传相互作用,其中每个同源物与另一个同源物的杂合缺失都是合成致死的。这种反复发生的染色体缺失导致了多种实体瘤和血液恶性肿瘤的发生,包括神经母细胞瘤和多发性骨髓瘤,从而导致了这种旁系合成致死性。通过遗传干扰或 dTAG 介导的降解,我们表明靶向 HDAC2 可抑制体外和体内缺乏 HDAC1 的神经母细胞瘤的生长。从机制上讲,我们发现这些细胞中 HDAC2 的靶向降解会促使核小体重塑和去乙酰化酶 (NuRD) 复合物的几个成员降解,导致基因组中 HDAC2-NuRD 结合位点的染色质可及性降低,并损害增强子相关转录的控制。此外,我们发现几种降解的 NuRD 复合物亚基是神经母细胞瘤和多发性骨髓瘤的依赖性,这为开发针对 HDAC1 或 HDAC2 的同功酶选择性降解剂提供了动力,这些降解剂可以利用 HDAC1/2 的合成致死性来靶向 NuRD 易损性。总之,我们将 HDAC1/2 旁系合成致死性确定为一种潜在的治疗靶点,并揭示了一种针对与 NuRD 相关的癌症依赖性的未被探索的机制。