Kaiahara Fábio Hideo, Pizi Eliane Cristina Gava, Straioto Fabiana Gouveia, Galvani Lucas David, Kuga Milton Carlos, Arrué Thalita Ayres, Junior Ageu Raupp, Só Marcus Vinícius Reis, Pereira Jefferson Ricardo, Vidotti Hugo
University of Western São Paulo, Presidente Prudente 19050-680, Brazil.
State University of São Paulo, UNESP, São Paulo 18618687, Brazil.
Polymers (Basel). 2025 Jan 21;17(3):265. doi: 10.3390/polym17030265.
This study investigates the impact of printing layer orientation on the mechanical properties of 3D-printed temporary prosthetic materials. Traditionally, temporary prostheses are fabricated using acrylic resin (polymethyl methacrylate), but advancements have introduced bis-acrylic resins, CAD/CAM-based acrylic resin (milled), and 3D printing technologies. In 3D printing, material is manufactured in overlapping layers, which can be oriented in different directions, directly affecting the material's resistance. Specimens were designed as bars (2 mm × 2 mm × 25 mm) and grouped according to their printing orientation: BP0 (0 degrees), BP45 (45 degrees), and BP90 (90 degrees). The models were created using Fusion 360 software (version 2.0.12600) and printed on a 3D DLP printer with DLP Slicer software (Chitu DLP Slicer, CBD Tech, version v1.9.0). The bars were then subjected to 3-point bending tests using an Instron Universal Testing Machine to measure Flexural Strength (FS) and Flexural Modulus (FM). Results demonstrated that the BP90 group exhibited the highest Flexural Strength (114.71 ± 7.61 MPa), followed by BP45 (90.10 ± 8.45 MPa) and BP0 (80.90 ± 4.01 MPa). Flexural Modulus was also highest in the BP90 group (3.74 ± 3.64 GPa), followed by BP45 (2.85 ± 2.70 GPa) and BP0 (2.52 ± 2.44 GPa). Significant statistical differences ( < 0.05) were observed, indicating changes in the mechanical properties of the 3D-printed material. The study concludes that printing orientation significantly influences the mechanical properties of temporary prosthetic materials, making the selection of an optimal orientation essential to enhance material performance for its intended application.
本研究调查了打印层方向对3D打印临时修复材料力学性能的影响。传统上,临时修复体是用丙烯酸树脂(聚甲基丙烯酸甲酯)制作的,但技术进步引入了双丙烯酸树脂、基于CAD/CAM的丙烯酸树脂(铣削)和3D打印技术。在3D打印中,材料是通过重叠层制造的,这些层可以沿不同方向排列,直接影响材料的强度。样本被设计为棒状(2毫米×2毫米×25毫米),并根据其打印方向分组:BP0(0度)、BP45(45度)和BP90(90度)。模型使用Fusion 360软件(版本2.0.12600)创建,并在配备DLP切片软件(Chitu DLP Slicer,CBD Tech,版本v1.9.0)的3D DLP打印机上打印。然后使用英斯特朗万能材料试验机对棒材进行三点弯曲试验,以测量弯曲强度(FS)和弯曲模量(FM)。结果表明,BP90组的弯曲强度最高(114.71±7.61兆帕),其次是BP45组(90.10±8.45兆帕)和BP0组(80.90±4.01兆帕)。弯曲模量在BP90组中也最高(3.74±3.64吉帕),其次是BP45组(2.85±2.70吉帕)和BP0组(2.52±2.44吉帕)。观察到显著的统计学差异(<0.05),表明3D打印材料的力学性能发生了变化。该研究得出结论,打印方向显著影响临时修复材料的力学性能,因此选择最佳方向对于提高材料在预期应用中的性能至关重要。