Suppr超能文献

基于贝叶斯优化和可解释人工智能的三文鱼消费行为预测

Salmon Consumption Behavior Prediction Based on Bayesian Optimization and Explainable Artificial Intelligence.

作者信息

Wu Zhan, Cha Sina, Wang Chunxiao, Qu Tinghong, Zou Zongfeng

机构信息

School of Economics and Management, Shanghai Ocean University, Shanghai 201306, China.

School of Business, The University of Hong Kong, Hong Kong 999077, China.

出版信息

Foods. 2025 Jan 28;14(3):429. doi: 10.3390/foods14030429.

Abstract

Predicting seafood consumption behavior is essential for fishing companies to adjust their production plans and marketing strategies. To achieve accurate predictions, this paper introduces a model for forecasting seafood consumption behavior based on an interpretable machine learning algorithm. Additionally, the Shapley Additive exPlanation (SHAP) model and the Accumulated Local Effects (ALE) plot were integrated to provide a detailed analysis of the factors influencing Shanghai residents' intentions to purchase salmon. In this study, we constructed nine regression prediction models, including ANN, Decision Tree, GBDT, Random Forest, AdaBoost, XGBoost, LightGBM, CatBoost, and NGBoost, to predict the consumers' intentions to purchase salmon and to compare their predictive performance. In addition, Bayesian optimization algorithm is used to optimize the hyperparameters of the optimal regression prediction model to improve the model prediction accuracy. Finally, the SHAP model was used to analyze the key factors and interactions affecting the consumers' willingness to purchase salmon, and the Accumulated Local Effects plot was used to show the specific prediction patterns of different influences on salmon consumption. The results of the study show that salmon farming safety and ease of cooking have significant nonlinear effects on salmon consumption; the BO-CatBoost nonlinear regression prediction model demonstrates superior performance compared to the benchmark model, with the test set exhibiting RMSE, MSE, MAE, R and TIC values of 0.155, 0.024, 0.097, 0.902, and 0.313, respectively. This study can provide technical support for suppliers in the salmon value chain and help their decision-making to adjust their corporate production plan and marketing activities.

摘要

预测海鲜消费行为对于渔业公司调整生产计划和营销策略至关重要。为了实现准确预测,本文引入了一种基于可解释机器学习算法的海鲜消费行为预测模型。此外,还集成了Shapley值加法解释(SHAP)模型和累积局部效应(ALE)图,以详细分析影响上海居民购买三文鱼意愿的因素。在本研究中,我们构建了九个回归预测模型,包括人工神经网络(ANN)、决策树、梯度提升决策树(GBDT)、随机森林、自适应增强(AdaBoost)、极端梯度提升(XGBoost)、轻量级梯度提升机(LightGBM)、类别提升(CatBoost)和自然梯度提升(NGBoost),以预测消费者购买三文鱼的意愿并比较它们的预测性能。此外,使用贝叶斯优化算法对最优回归预测模型的超参数进行优化,以提高模型预测精度。最后,利用SHAP模型分析影响消费者购买三文鱼意愿的关键因素及其相互作用,并使用累积局部效应图展示不同影响因素对三文鱼消费的具体预测模式。研究结果表明,三文鱼养殖安全性和烹饪便捷性对三文鱼消费有显著的非线性影响;与基准模型相比,BO-CatBoost非线性回归预测模型表现出卓越的性能,测试集的均方根误差(RMSE)、均方误差(MSE)、平均绝对误差(MAE)、决定系数(R)和泰勒图相关系数(TIC)值分别为0.155、0.024、0.097、0.902和0.313。本研究可为三文鱼价值链中的供应商提供技术支持,并帮助他们进行决策,以调整公司生产计划和营销活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949c/11817250/e70ddb02e587/foods-14-00429-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验