Suppr超能文献

液化石油气消费者再充装频率的预测:一项使用可解释机器学习的研究。

Prediction of consumers refill frequency of LPG: A study using explainable machine learning.

作者信息

Trivedi Shrawan Kumar, Roy Abhijit Deb, Kumar Praveen, Jena Debashish, Sinha Avik

机构信息

Business Analytics and Information Systems Area, Rajiv Gandhi Institute of Petroleum Technology, Amethi, India.

Operations Management, Rajiv Gandhi Institute of Petroleum Technology, Amethi, India.

出版信息

Heliyon. 2023 Dec 18;10(1):e23466. doi: 10.1016/j.heliyon.2023.e23466. eCollection 2024 Jan 15.

Abstract

Launched in 2016, the PMUY Programme of the Government of India aimed to provide 8 crore LPG connections to women in rural households over four years. After acquiring a new connection, some households appeared uninterested in ordering subsequent subsidized LPG refills, impacting programme's sustainability, and targeting strategy. We propose a prediction model using "Explainable Machine Learning" to anticipate the beneficiaries' refill frequency with a view to improving LPG-refills and social targeting. In this paper, we suggest an enhanced stacked SVM (ISS) model for classification, which is contrasted with state-of-art ML models: Random Forest (RF), SVM-RBF, Naive Bayes (NB), and Decision Tree (C5.0). Some of the performance matrices that are used to evaluate the models include accuracy, sensitivity, specificity, Cohen's Kappa statistics, Receiver Operating Characteristic curve (ROC), and area under the curve (AUC). The proposed approach, which was validated with 10-fold cross validation, produced the best overall accuracies for data splits of 50-50, 66-34, and 80-20. The "Explainable AI (XAI)" model has also been used to describe how models and features interact, and to discuss the importance of features and their contributions to prediction. The recommended XAI will aid in efficient "beneficiary targeting" and "policy interventions".

摘要

印度政府的“普拉丹·曼特里·乌贾瓦拉雅计划”(PMUY)于2016年启动,旨在在四年内向农村家庭妇女提供800万个液化石油气连接。在获得新连接后,一些家庭似乎对订购后续补贴的液化石油气 refill不感兴趣,影响了该计划的可持续性和目标定位策略。我们提出了一种使用“可解释机器学习”的预测模型,以预测受益人的 refill频率,以期改善液化石油气 refill和社会目标定位。在本文中,我们提出了一种用于分类的增强型堆叠支持向量机(ISS)模型,并将其与最先进的机器学习模型进行对比:随机森林(RF)、支持向量机 - 径向基函数(SVM - RBF)、朴素贝叶斯(NB)和决策树(C5.0)。用于评估模型的一些性能指标包括准确率、灵敏度、特异性、科恩卡帕统计量、接收者操作特征曲线(ROC)和曲线下面积(AUC)。所提出的方法通过10折交叉验证进行了验证,在50 - 50、66 - 34和80 - 20的数据分割中产生了最佳的总体准确率。“可解释人工智能(XAI)”模型也被用于描述模型和特征如何相互作用,并讨论特征的重要性及其对预测的贡献。推荐的XAI将有助于高效的“受益人目标定位”和“政策干预”。 (注:refill在文中可能有特定含义,这里直接保留英文未翻译,需结合具体语境理解准确意思)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8823/10776940/54ee92c9217c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验