Suppr超能文献

借助人工智能驱动的系统通过声音有效检测和定位应急车辆来提高道路安全。

Enhancing Road Safety with AI-Powered System for Effective Detection and Localization of Emergency Vehicles by Sound.

作者信息

Banchero Lucas, Vacalebri-Lloret Francisco, Mossi Jose M, Lopez Jose J

机构信息

Institute of Telecommunications and Multimedia Applications, Universitat Politecnica de Valencia, 46022 Valencia, Spain.

出版信息

Sensors (Basel). 2025 Jan 28;25(3):793. doi: 10.3390/s25030793.

Abstract

This work presents the design and implementation of an emergency sound detection and localization system, specifically for sirens and horns, aimed at enhancing road safety in automotive environments. The system integrates specialized hardware and advanced artificial intelligence algorithms to function effectively in complex acoustic conditions, such as urban traffic and environmental noise. It introduces an aerodynamic structure designed to mitigate wind noise and vibrations in microphones, ensuring high-quality audio capture. In terms of analysis through artificial intelligence, the system utilizes transformer-based architecture and convolutional neural networks (such as residual networks and U-NET) to detect, localize, clean, and analyze nearby sounds. Additionally, it operates in real-time through sliding windows, providing the driver with accurate visual information about the direction, proximity, and trajectory of the emergency sound. Experimental results demonstrate high accuracy in both controlled and real-world conditions, with a detection accuracy of 98.86% for simulated data and 97.5% for real-world measurements, and localization with an average error of 5.12° in simulations and 10.30° in real-world measurements. These results highlight the effectiveness of the proposed approach for integration into driver assistance systems and its potential to improve road safety.

摘要

这项工作展示了一种紧急声音检测与定位系统的设计与实现,该系统专门针对警笛和喇叭,旨在提高汽车环境中的道路安全性。该系统集成了专门的硬件和先进的人工智能算法,以便在复杂的声学条件下有效运行,例如城市交通和环境噪声。它引入了一种空气动力学结构,旨在减轻麦克风中的风噪声和振动,确保高质量的音频捕捉。在通过人工智能进行分析方面,该系统利用基于变压器的架构和卷积神经网络(如残差网络和U-Net)来检测、定位、清理和分析附近的声音。此外,它通过滑动窗口实时运行,为驾驶员提供有关紧急声音的方向、接近程度和轨迹的准确视觉信息。实验结果表明,在受控条件和实际环境中该系统都具有很高的准确性,模拟数据的检测准确率为98.86%,实际测量的准确率为97.5%,模拟中的定位平均误差为5.12°,实际测量中的定位平均误差为10.30°。这些结果突出了所提出方法集成到驾驶员辅助系统中的有效性及其改善道路安全的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001a/11820623/1291d307108d/sensors-25-00793-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验