Suppr超能文献

利用增强面部识别技术,在不同光照条件下推进辅助驾驶车辆的驾驶员疲劳检测。

Advancing driver fatigue detection in diverse lighting conditions for assisted driving vehicles with enhanced facial recognition technologies.

机构信息

Nanning University, Nanning, Guangxi, China.

出版信息

PLoS One. 2024 Jul 10;19(7):e0304669. doi: 10.1371/journal.pone.0304669. eCollection 2024.

Abstract

Against the backdrop of increasingly mature intelligent driving assistance systems, effective monitoring of driver alertness during long-distance driving becomes especially crucial. This study introduces a novel method for driver fatigue detection aimed at enhancing the safety and reliability of intelligent driving assistance systems. The core of this method lies in the integration of advanced facial recognition technology using deep convolutional neural networks (CNN), particularly suited for varying lighting conditions in real-world scenarios, significantly improving the robustness of fatigue detection. Innovatively, the method incorporates emotion state analysis, providing a multi-dimensional perspective for assessing driver fatigue. It adeptly identifies subtle signs of fatigue in rapidly changing lighting and other complex environmental conditions, thereby strengthening traditional facial recognition techniques. Validation on two independent experimental datasets, specifically the Yawn and YawDDR datasets, reveals that our proposed method achieves a higher detection accuracy, with an impressive 95.3% on the YawDDR dataset, compared to 90.1% without the implementation of Algorithm 2. Additionally, our analysis highlights the method's adaptability to varying brightness levels, improving detection accuracy by up to 0.05% in optimal lighting conditions. Such results underscore the effectiveness of our advanced data preprocessing and dynamic brightness adaptation techniques in enhancing the accuracy and computational efficiency of fatigue detection systems. These achievements not only showcase the potential application of advanced facial recognition technology combined with emotional analysis in autonomous driving systems but also pave new avenues for enhancing road safety and driver welfare.

摘要

在日益成熟的智能驾驶辅助系统的背景下,有效地监测长途驾驶中的驾驶员警觉性变得尤为重要。本研究介绍了一种新的驾驶员疲劳检测方法,旨在提高智能驾驶辅助系统的安全性和可靠性。该方法的核心在于集成使用深度卷积神经网络(CNN)的先进面部识别技术,特别适合真实场景中的变化光照条件,显著提高了疲劳检测的鲁棒性。创新性地,该方法结合了情绪状态分析,为评估驾驶员疲劳提供了多维视角。它能够巧妙地识别在快速变化的光照和其他复杂环境条件下的疲劳细微迹象,从而增强了传统的面部识别技术。在两个独立的实验数据集(即打哈欠和 YawDDR 数据集)上进行验证的结果表明,我们提出的方法实现了更高的检测精度,在 YawDDR 数据集上的准确率达到 95.3%,而没有实施算法 2 的准确率为 90.1%。此外,我们的分析还强调了该方法对不同亮度水平的适应性,在最佳光照条件下可将检测精度提高高达 0.05%。这些结果突出了先进的数据预处理和动态亮度自适应技术在提高疲劳检测系统的准确性和计算效率方面的有效性。这些成果不仅展示了结合情感分析的先进面部识别技术在自动驾驶系统中的潜在应用,还为提高道路安全和驾驶员福利开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32fe/11236172/3f78d1507371/pone.0304669.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验