Suppr超能文献

超声检查中人工智能分析在胆囊疾病诊断中的应用现状:一项范围综述

Current status of artificial intelligence analysis for the diagnosis of gallbladder diseases using ultrasonography: a scoping review.

作者信息

Wang Xiuming, Zhang Huabin, Bai Zhiyong, Xie Xia, Feng Yue

机构信息

Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

TEDA Yujin Digestive Health Industry Research Institute, Economic and Technological Development Zone (TEDA), Tianjin, China.

出版信息

Transl Gastroenterol Hepatol. 2024 Dec 6;10:12. doi: 10.21037/tgh-24-61. eCollection 2025.

Abstract

BACKGROUND

Ultrasound (US) is the first-line imaging method for gallbladder diseases (GBDs), with advantages of easy accessibility, real-time dynamic imaging, and no radiation. However, using only visual judgment from US images to stratify the risk of gallbladder (GB) lesions is challenging. In addition, the diagnostic ability of sonographers is highly correlated with their knowledge reserves, clinical experience, and proficiency in operation. Recently, the application of artificial intelligence (AI) in medical image recognition has attracted widespread attention. This review aims to provide a comprehensive summary and analysis of the application of US-based AI technology in various GBDs. In addition, the diagnostic ability of US-based AI technology in GBDs based on the findings of published articles was evaluated.

METHODS

We searched the PubMed and Wiley databases using predefined keywords for articles published over the past two decades (from January 2003 to December 2023) to evaluate research progress in this field. Articles were screened for relevant publications about US-based AI applications in GBDs. Then, we conducted a comprehensive summary and analysis of the application of US-based AI technology in various GBDs and evaluated its diagnostic performance.

RESULTS

Following PRISMA-ScR guidelines, 16 studies were included in this review. These studies involve a relatively narrow spectrum of GBDs, including GB polyps, gallbladder cancer (GBC), GB stones, and biliary atresia (BA). The most widely used applications of AI in GBDs are GB polyps and GBC. AI has achieved satisfactory sensitivity, specificity, or accuracy in the differential diagnosis of GB polypoid lesions. AI has certain application value in the GB stone measurement and auxiliary diagnosis of GBC and BA.

CONCLUSIONS

The current status, limitations, and future perspectives of AI-assisted ultrasonography in GBDs were reported. In the near future, the AI has the potential to become a breakthrough in the diagnosis of GBDs, supporting doctors in improving the diagnostic ability of GBDs with ultrasonography.

摘要

背景

超声(US)是胆囊疾病(GBDs)的一线成像方法,具有易于获取、实时动态成像且无辐射的优点。然而,仅通过超声图像的视觉判断来分层胆囊(GB)病变的风险具有挑战性。此外,超声检查人员的诊断能力与其知识储备、临床经验和操作熟练程度高度相关。近年来,人工智能(AI)在医学图像识别中的应用受到广泛关注。本综述旨在全面总结和分析基于超声的人工智能技术在各种胆囊疾病中的应用。此外,根据已发表文章的研究结果,评估了基于超声的人工智能技术在胆囊疾病中的诊断能力。

方法

我们使用预定义的关键词在PubMed和Wiley数据库中搜索过去二十年(2003年1月至2023年12月)发表的文章,以评估该领域的研究进展。筛选有关基于超声的人工智能在胆囊疾病中的应用的相关出版物。然后,我们对基于超声的人工智能技术在各种胆囊疾病中的应用进行了全面总结和分析,并评估了其诊断性能。

结果

按照PRISMA-ScR指南,本综述纳入了16项研究。这些研究涉及的胆囊疾病范围相对较窄,包括胆囊息肉、胆囊癌(GBC)、胆结石和胆道闭锁(BA)。人工智能在胆囊疾病中应用最广泛的是胆囊息肉和胆囊癌。人工智能在胆囊息肉样病变的鉴别诊断中已取得令人满意的灵敏度、特异性或准确率。人工智能在胆结石测量以及胆囊癌和胆道闭锁的辅助诊断中具有一定的应用价值。

结论

报告了人工智能辅助超声检查在胆囊疾病中的现状、局限性和未来前景。在不久的将来,人工智能有可能成为胆囊疾病诊断的一个突破,支持医生提高超声检查对胆囊疾病的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1285/11811555/1992ebec96dd/tgh-10-24-61-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验