Suppr超能文献

髓母细胞瘤复发的危险因素及风险预测模型

Risk factors and risk prediction model for recurrence in medulloblastoma.

作者信息

Ai Ruyu, Liang Qiandong, Deng Guanhua, Lai Mingyao, Hu Qingjun, Li Shaoqun, Ye Minting, Cai Linbo, Li Juan

机构信息

Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China.

Department of Radiation Oncology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

出版信息

Transl Pediatr. 2025 Jan 24;14(1):80-91. doi: 10.21037/tp-24-392. Epub 2025 Jan 20.

Abstract

BACKGROUND

At present, there is a lack of established treatment protocols for recurrent medulloblastoma. The assessment of recurrence risk prior to treatment is of utmost importance in determining the most suitable treatment modality and intensity for medulloblastoma. Consequently, the creation of a predictive model for medulloblastoma recurrence is imperative in aiding clinical decision-making. The objective of this study is to construct an enhanced risk prediction model for relapse in medulloblastoma by integrating molecular subtyping and straightforward immune markers, such as neutrophil-to-lymphocyte ratio (NLR), into a nomogram.

METHODS

A retrospective analysis was conducted on the clinical data of 273 patients diagnosed with medulloblastoma. The NLR was calculated prior to radiotherapy, and various clinical characteristics including age, gender, molecular subtype, dissemination, and residual lesions after resection were collected. Survival analysis was performed utilizing the Kaplan-Meier method, while Cox regression models were employed to identify independent prognostic factors. Furthermore, a column chart illustrating all independent prognostic factors was generated using R. The nomogram's prognostic predictive ability was evaluated using the Concordance Index (C-index), area under the curve (AUC), and calibration curve.

RESULTS

The median progression-free survival (PFS) for the entire cohort was determined to be 63.8 months. Univariate and multivariate Cox regression analyses were conducted to identify independent prognostic factors that were associated with PFS in patients diagnosed with medulloblastoma. These factors included age, residual tumor volume exceeding 1.5 cm, NLR exceeding 4.5, dissemination occurring prior radiotherapy, and molecular subtype classified as Group 3. These identified factors were then utilized to construct a column chart. The nomogram C-index for the predicted PFS in the training and validation cohorts was 0.749 and 0.736, respectively. The AUC for predicting the 3-year PFS exhibited satisfactory accuracy in the validation cohort (AUC =0.71). Furthermore, the calibration curve indicated a strong concordance between the predicted and ideal values. Additionally, the Kaplan-Meier curve, based on PFS, demonstrated a statistically significant distinction between the low-risk and high-risk groups as predicted by the nomogram (P<0.001).

CONCLUSIONS

Our study revealed that the NLR prior to treatment serves as an autonomous prognostic determinant for the recurrence or metastasis of medulloblastoma subsequent to treatment. By integrating NLR with clinical variables, the utilization of a nomogram demonstrates the capability to anticipate PFS following radiotherapy in medulloblastoma patients. This nomogram exhibits potential in facilitating more accurate risk stratification, thereby guiding the implementation of personalized treatment strategies for individuals with medulloblastoma.

摘要

背景

目前,复发性髓母细胞瘤缺乏既定的治疗方案。治疗前复发风险的评估对于确定髓母细胞瘤最合适的治疗方式和强度至关重要。因此,创建一个髓母细胞瘤复发的预测模型对于辅助临床决策势在必行。本研究的目的是通过将分子亚型和诸如中性粒细胞与淋巴细胞比率(NLR)等简单的免疫标志物整合到列线图中,构建一个增强的髓母细胞瘤复发风险预测模型。

方法

对273例诊断为髓母细胞瘤的患者的临床数据进行回顾性分析。在放疗前计算NLR,并收集包括年龄、性别、分子亚型、播散情况以及切除术后残留病灶等各种临床特征。采用Kaplan-Meier法进行生存分析,同时使用Cox回归模型确定独立的预后因素。此外,使用R生成一个展示所有独立预后因素的柱状图。使用一致性指数(C-index)、曲线下面积(AUC)和校准曲线评估列线图的预后预测能力。

结果

整个队列的中位无进展生存期(PFS)确定为63.8个月。进行单因素和多因素Cox回归分析以确定与诊断为髓母细胞瘤患者的PFS相关的独立预后因素。这些因素包括年龄、残留肿瘤体积超过1.5 cm、NLR超过4.5、放疗前发生播散以及分子亚型归类为3组。然后利用这些确定的因素构建一个柱状图。训练队列和验证队列中预测PFS的列线图C-index分别为0.749和0.736。在验证队列中预测3年PFS的AUC显示出令人满意的准确性(AUC =0.71)。此外,校准曲线表明预测值与理想值之间具有很强的一致性。另外,基于PFS的Kaplan-Meier曲线显示,列线图预测的低风险组和高风险组之间存在统计学上的显著差异(P<0.001)。

结论

我们的研究表明,治疗前的NLR是髓母细胞瘤治疗后复发或转移的一个独立预后决定因素。通过将NLR与临床变量相结合,使用列线图能够预测髓母细胞瘤患者放疗后的PFS。该列线图在促进更准确的风险分层方面具有潜力,从而指导为髓母细胞瘤患者实施个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1779/11811586/0647d29019b8/tp-14-01-80-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验