Suppr超能文献

基于术前增强 CT 的影像组学模型预测肝细胞癌患者总生存期。

Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma.

机构信息

Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China.

出版信息

World J Gastroenterol. 2022 Aug 21;28(31):4376-4389. doi: 10.3748/wjg.v28.i31.4376.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with a rising incidence worldwide. The prognosis of HCC patients after radical resection remains poor. Radiomics is a novel machine learning method that extracts quantitative features from medical images and provides predictive information of cancer, which can assist with cancer diagnosis, therapeutic decision-making and prognosis improvement.

AIM

To develop and validate a contrast-enhanced computed tomography-based radiomics model for predicting the overall survival (OS) of HCC patients after radical hepatectomy.

METHODS

A total of 150 HCC patients were randomly divided into a training cohort ( = 107) and a validation cohort ( = 43). Radiomics features were extracted from the entire tumour lesion. The least absolute shrinkage and selection operator algorithm was applied for the selection of radiomics features and the construction of the radiomics signature. Univariate and multivariate Cox regression analyses were used to identify the independent prognostic factors and develop the predictive nomogram, incorporating clinicopathological characteristics and the radiomics signature. The accuracy of the nomogram was assessed with the concordance index, receiver operating characteristic (ROC) curve and calibration curve. The clinical utility was evaluated by decision curve analysis (DCA). Kaplan-Meier methodology was used to compare the survival between the low- and high-risk subgroups.

RESULTS

In total, seven radiomics features were selected to construct the radiomics signature. According to the results of univariate and multivariate Cox regression analyses, alpha-fetoprotein (AFP), neutrophil-to-lymphocyte ratio (NLR) and radiomics signature were included to build the nomogram. The C-indices of the nomogram in the training and validation cohorts were 0.736 and 0.774, respectively. ROC curve analysis for predicting 1-, 3-, and 5-year OS confirmed satisfactory accuracy [training cohort, area under the curve (AUC) = 0.850, 0.791 and 0.823, respectively; validation cohort, AUC = 0.905, 0.884 and 0.911, respectively]. The calibration curve analysis indicated a good agreement between the nomogram-prediction and actual survival. DCA curves suggested that the nomogram had more benefit than traditional staging system models. Kaplan-Meier survival analysis indicated that patients in the low-risk group had longer OS and disease-free survival (all < 0.0001).

CONCLUSION

The nomogram containing the radiomics signature, NLR and AFP is a reliable tool for predicting the OS of HCC patients.

摘要

背景

肝细胞癌(HCC)是最常见的原发性肝脏恶性肿瘤,其发病率在全球呈上升趋势。HCC 患者根治性切除术后的预后仍然较差。放射组学是一种从医学图像中提取定量特征并提供癌症预测信息的新的机器学习方法,可辅助癌症诊断、治疗决策和预后改善。

目的

建立并验证基于增强 CT 的放射组学模型,以预测 HCC 患者根治性肝切除术后的总生存期(OS)。

方法

共纳入 150 例 HCC 患者,随机分为训练队列(n=107)和验证队列(n=43)。从整个肿瘤病变中提取放射组学特征。应用最小绝对值收缩和选择算子算法选择放射组学特征并构建放射组学特征。单因素和多因素 Cox 回归分析用于识别独立的预后因素,并构建包含临床病理特征和放射组学特征的预测列线图。采用一致性指数、受试者工作特征(ROC)曲线和校准曲线评估列线图的准确性。通过决策曲线分析(DCA)评估临床实用性。Kaplan-Meier 法比较低风险和高风险亚组之间的生存情况。

结果

共筛选出 7 个放射组学特征构建放射组学特征。根据单因素和多因素 Cox 回归分析结果,纳入甲胎蛋白(AFP)、中性粒细胞与淋巴细胞比值(NLR)和放射组学特征构建列线图。训练队列和验证队列的列线图 C 指数分别为 0.736 和 0.774。预测 1、3 和 5 年 OS 的 ROC 曲线分析显示具有较好的准确性[训练队列,曲线下面积(AUC)分别为 0.850、0.791 和 0.823;验证队列,AUC 分别为 0.905、0.884 和 0.911]。校准曲线分析表明,列线图预测与实际生存之间具有良好的一致性。DCA 曲线表明,列线图比传统分期系统模型具有更多获益。Kaplan-Meier 生存分析表明,低风险组患者的 OS 和无病生存期均更长(均 P<0.0001)。

结论

包含放射组学特征、NLR 和 AFP 的列线图是预测 HCC 患者 OS 的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4681/9453776/b20b3bf1c342/WJG-28-4376-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验