Suppr超能文献

用于精细化道路安全管理的路面水膜深度预测及临界降雨条件估计:一项模拟研究

Prediction of pavement water film depth and estimation of critical rainfall conditions for refined road safety management: A simulation study.

作者信息

Xu Jinliang, Lv Wenzhen, Gao Chao, Xin Tian, Liu Xiantong, Hou Yahao

机构信息

School of Highway, Chang'an University, Xi'an, Shaanxi, China.

出版信息

PLoS One. 2025 Feb 13;20(2):e0318228. doi: 10.1371/journal.pone.0318228. eCollection 2025.

Abstract

The development of a smart expressway ensuring all-weather safe access represents the future trajectory of transportation infrastructure. A key task in this advancement is the precise prediction of water film depth (WFD) on road surfaces. Conventional WFD prediction models often assume constant grade and cross slope, an oversimplification that may affect predictive accuracy. In this study, typical highway alignments were meticulously modeled in three dimensions (3D) using Building Information Modeling (BIM) technology, and WFD simulations were conducted using a coupled discrete phase model and Eulerian wall film model (DE-WFD model). Simulation results revealed that the DE-WFD model consistently predicts higher WFD compared to the RRL and PAVDRN models. In contrast, its predictions are approximately 0.12 mm (40%) lower than those of the Gallaway model when rainfall intensity is below 7.8 mm/h. At higher rainfall intensities, DE-WFD predictions closely align with the Gallaway model. Field tests conducted with a feeler gauge of 0.01 mm resolution confirmed the accuracy of these predictions, showing a maximum deviation of just 7% between predicted and measured values. Additionally, the study assessed the sensitivity of the DE-WFD model to variations in grade and cross slope along the road length. Results indicated that on road surfaces employing dispersed drainage, WFD is approximately 6% higher at sag vertical curves and lower at crest vertical curves compared to constant slope segments. Moreover, WFD increases by over 35% at superelevation transitions. To quantify the impact of rainfall on road safety, a critical WFD parameter was developed. This parameter defines the maximum WFD under specific rainfall conditions that reduces the pavement-tire tangential friction coefficient to a level corresponding to the standard stopping sight distance. Using the DE-WFD model, simulations of hourly rainfall intensity and duration identified conditions under which WFD reaches this critical value for various roadway geometries. These findings provide valuable references for the precision management of highway operational safety. This suggests that traffic safety authorities should implement warning and intervention measures when critical rainfall conditions are exceeded to ensure driving safety.

摘要

发展能确保全天候安全通行的智能高速公路代表了交通基础设施的未来发展方向。这一发展进程中的一项关键任务是精确预测路面水膜深度(WFD)。传统的WFD预测模型通常假定坡度和横坡恒定,这种过度简化可能会影响预测准确性。在本研究中,利用建筑信息模型(BIM)技术对典型公路线形进行了精确的三维(3D)建模,并使用耦合离散相模型和欧拉壁膜模型(DE-WFD模型)进行了WFD模拟。模拟结果显示,与RRL和PAVDRN模型相比,DE-WFD模型始终预测出更高的WFD。相比之下,当降雨强度低于7.8毫米/小时时,其预测值比加拉韦模型低约0.12毫米(40%)。在较高降雨强度下,DE-WFD模型的预测结果与加拉韦模型密切吻合。使用分辨率为0.01毫米的塞尺进行的现场测试证实了这些预测的准确性,预测值与测量值之间的最大偏差仅为7%。此外,该研究评估了DE-WFD模型对沿道路长度方向坡度和横坡变化的敏感性。结果表明,在采用分散排水的路面上,与恒定坡度路段相比,凹形竖曲线处的WFD大约高6%,凸形竖曲线处的WFD则较低。此外,在超高过渡段,WFD增加超过35%。为了量化降雨对道路安全的影响,制定了一个关键的WFD参数。该参数定义了在特定降雨条件下使路面-轮胎切向摩擦系数降低到对应于标准停车视距水平的最大WFD。使用DE-WFD模型,对每小时降雨强度和持续时间进行模拟,确定了各种道路几何形状下WFD达到该临界值的条件。这些发现为公路运营安全的精确管理提供了有价值的参考。这表明,当超过临界降雨条件时,交通安全当局应实施警告和干预措施,以确保驾驶安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f345/11825053/c45ff9a6c0c4/pone.0318228.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验