Rana Nishant K, Lisk Christina, Cendali Francesca, Lucero Melissa J, Grier Abby, Setua Saini, Thangaraju Kiruphararan, Khan Alamzeb, Reisz Julie A, Dzieciatkowska Monika, Pak David I, Swindle Delaney, Danaher Mae X, Khan Saqib, Westover Natalie, Carter Matthieu, Hassell Kathryn, Nuss Rachelle, George Gemlyn, Buehler Paul W, D'Alessandro Angelo, Irwin David C
Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045, United States.
Department of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora Colorado 80045, United States.
J Proteome Res. 2025 Mar 7;24(3):1306-1316. doi: 10.1021/acs.jproteome.4c00814. Epub 2025 Feb 13.
Sickle cell disease and β-Thalassemia are two of the most prevalent hemoglobinopathies worldwide. Both occur due to genetic mutations within the HBB gene and are characterized by red blood cell dysfunction, anemia, and end-organ injury. The spleen and liver are the primary organs where erythrophagocytosis, engulfing the red blood cells, occurs in these diseases. Understanding metabolism and protein composition within these tissues can therefore inform the extent of hemolysis and disease progression. We utilized a multiomics approach to highlight metabolomic and proteomic differences in the spleen and liver. The Berkley sickle cell disease (Berk-SS), heterozygous B1/B2 globin gene deletion (Hbb) a known β-Thalassemia model, and wildtype (WT, C57/Bl6) murine models were evaluated in this report. This analysis showed Berk-SS and Hbb shared distinct antioxidant and immunosuppressive splenic phenotypes compared to WT mice with divergence in purine metabolism, gluconeogenesis, and glycolysis. In contrast, Berk-SS mice have a distinct liver pro-inflammatory phenotype not shared by Hbb or WT mice. Together, these data emphasize that metabolic and proteomic reprogramming of the spleen and livers in Berk-SS and Hbbmice may be relevant to the individual disease processes.
镰状细胞病和β地中海贫血是全球最常见的两种血红蛋白病。两者均由HBB基因内的基因突变引起,其特征为红细胞功能障碍、贫血和终末器官损伤。脾脏和肝脏是这些疾病中发生红细胞吞噬(即吞噬红细胞)的主要器官。因此,了解这些组织内的代谢和蛋白质组成可以为溶血程度和疾病进展提供信息。我们采用多组学方法来突出脾脏和肝脏中的代谢组学和蛋白质组学差异。本报告评估了伯克利镰状细胞病(Berk-SS)、杂合B1/B2珠蛋白基因缺失(Hbb,一种已知的β地中海贫血模型)和野生型(WT,C57/Bl6)小鼠模型。该分析表明,与野生型小鼠相比,Berk-SS和Hbb在嘌呤代谢、糖异生和糖酵解方面存在差异,具有独特的抗氧化和免疫抑制脾脏表型。相比之下,Berk-SS小鼠具有独特的肝脏促炎表型,而Hbb或野生型小鼠则没有。总之,这些数据强调,Berk-SS和Hbb小鼠脾脏和肝脏的代谢和蛋白质组重编程可能与个体疾病进程相关。