文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨与软骨再生的电子材料进展:发展、挑战与展望

Advances in Electrical Materials for Bone and Cartilage Regeneration: Developments, Challenges, and Perspectives.

作者信息

Yao Yubin, Cui Xi, Ding Shenglong, Wang Ketao, Zhang Mingzhu

机构信息

Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.

出版信息

Adv Sci (Weinh). 2025 Feb 14:e2411209. doi: 10.1002/advs.202411209.


DOI:10.1002/advs.202411209
PMID:39950842
Abstract

Severe bone and cartilage defects caused by trauma are challenging to treat, often resulting in poor outcomes. An endogenous electric field (EnEF) is crucial for bone regeneration, making electrical materials a promising therapy. This review provides a comprehensive overview of the role of bioelectric signals in bone and cartilage cells, alongside recent advancements in electrical biomaterials, with particular emphasis on nanogenerators, piezoelectric materials, triboelectric scaffolds, and zwitterionic hydrogels. It further investigates the impact of these electrical biomaterials on bone and cartilage regeneration, as well as the applications of both endogenous and exogenous electrical stimulation (ES) and the mechanisms underlying ES-induced cellular and molecular responses. Finally, the review underscores future directions for ES systems in tissue engineering, emphasizing the critical importance of integrating structural integrity, mechanical properties, and electrical signal delivery into intelligent implantable scaffolds.

摘要

创伤导致的严重骨和软骨缺损治疗颇具挑战,常常导致不良预后。内源性电场(EnEF)对骨再生至关重要,这使得电材料成为一种有前景的治疗方法。本综述全面概述了生物电信号在骨和软骨细胞中的作用,以及电生物材料的最新进展,特别强调了纳米发电机、压电材料、摩擦电支架和两性离子水凝胶。进一步研究了这些电生物材料对骨和软骨再生的影响,以及内源性和外源性电刺激(ES)的应用及其诱导细胞和分子反应的潜在机制。最后,该综述强调了组织工程中ES系统的未来方向,强调将结构完整性、机械性能和电信号传递整合到智能可植入支架中的至关重要性。

相似文献

[1]
Advances in Electrical Materials for Bone and Cartilage Regeneration: Developments, Challenges, and Perspectives.

Adv Sci (Weinh). 2025-2-14

[2]
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.

Int J Nanomedicine. 2025-6-17

[3]
Nature-Inspired Bioelectric Stimuli-Based Electroactive Polymeric Therapeutics Technology for Osteoarthritis Treatment─A Review.

ACS Biomater Sci Eng. 2025-6-22

[4]
Electric/Magnetic Intervention for Bone Regeneration: A Systematic Review and Network Meta-Analysis.

Tissue Eng Part B Rev. 2023-6

[5]
Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration.

Acta Biomater. 2025-6-15

[6]
Mechanical harvesting of cell sheets: an efficient approach for bone and cartilage tissue engineering.

Stem Cell Res Ther. 2025-6-17

[7]
Nanomedicine-Driven Approaches for Kartogenin Delivery: Advancing Chondrogenic Differentiation and Cartilage Regeneration in Tissue Engineering.

Int J Nanomedicine. 2025-6-13

[8]
Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration.

Knee Surg Sports Traumatol Arthrosc. 2011-9-11

[9]
The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.

J Biomater Appl. 2016-11

[10]
The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

J Orthop Surg Res. 2017-3-9

引用本文的文献

[1]
The role of electrical stimulation in bone regeneration: mechanistic insights and therapeutic advances.

Bioelectron Med. 2025-8-8

[2]
Extrachromosomal circular DNAs in the differentiation of human bone marrow mesenchymal stem cells.

Stem Cell Res Ther. 2025-7-18

[3]
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.

Biomaterials. 2025-11

本文引用的文献

[1]
Electrically-stimulated cellular and tissue events are coordinated through ion channel-mediated calcium influx and chromatin modifications across the cytosol-nucleus space.

Biomaterials. 2025-3

[2]
The Biomimetic Electrical Stimulation System Inducing Osteogenic Differentiations of BMSCs.

ACS Appl Mater Interfaces. 2024-10-23

[3]
Biodegradable Piezoelectric-Conductive Integrated Hydrogel Scaffold for Repair of Osteochondral Defects.

Adv Mater. 2024-11

[4]
Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy.

J Orthop Translat. 2024-6-27

[5]
Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology.

Adv Mater. 2024-8

[6]
Rationally Improved Surface Charge Density of Triboelectric Nanogenerator with TiO-MXene/Polystyrene Nanofiber Charge Trapping Layer for Biomechanical Sensing and Wound Healing Application.

Adv Sci (Weinh). 2024-9

[7]
From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration.

Burns Trauma. 2024-7-2

[8]
E-cardiac patch to sense and repair infarcted myocardium.

Nat Commun. 2024-5-16

[9]
Injectable and Dynamically Crosslinked Zwitterionic Hydrogels for Anti-Fouling and Tissue Regeneration Applications.

Adv Healthc Mater. 2024-7

[10]
Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration.

Sci Bull (Beijing). 2024-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索