Suppr超能文献

组织再生中生物电子学的生物电和物理化学基础。

Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.

作者信息

Zheng Yuze, Yang Guangqing, Li Pengju, Tian Bozhi

机构信息

Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.

出版信息

Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.

Abstract

Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.

摘要

理解并利用与活组织相互作用的生物电信号通路和材料的物理化学性质,是推进组织再生的核心。特别是,新兴的生物电子学领域利用这些原理,开发出针对个体患者动态需求的个性化、微创治疗策略。通过将传感和驱动模块集成到灵活的生物相容性设备中,临床医生可以持续监测和调节局部电微环境,从而在无需广泛手术干预的情况下引导再生过程。本综述对基本生物电信号和物理化学因素如何驱动下一代生物电子平台的设计与工程进行了批判性审视。这些平台不仅促进了神经、心脏、肌肉骨骼、皮肤和胃肠道系统中新生组织的形成和成熟,还能使治疗与每种组织类型独特的结构、功能和电生理特征精确匹配。总体而言,这些见解和创新代表了生物学、电子学和材料科学的融合,为提高再生治疗的疗效、特异性和长期稳定性带来了巨大希望,开创了先进组织工程和以患者为中心的再生医学的新时代。

相似文献

3
The Future of Biohybrid Regenerative Bioelectronics.生物杂交再生生物电子学的未来。
Adv Mater. 2025 Jan;37(3):e2408308. doi: 10.1002/adma.202408308. Epub 2024 Nov 20.
5
Piezo-electronics: A paradigm for self-powered bioelectronics.压电电子学:自供电生物电子学的一种范例。
Biomaterials. 2025 Jul;318:123118. doi: 10.1016/j.biomaterials.2025.123118. Epub 2025 Jan 23.
10
Biomaterials for Bone Regenerative Engineering.用于骨再生工程的生物材料。
Adv Healthc Mater. 2015 Jun 24;4(9):1268-85. doi: 10.1002/adhm.201400760. Epub 2015 Apr 7.

本文引用的文献

10
Unlocking the electrochemical functions of biomolecular condensates.解锁生物分子凝聚物的电化学功能。
Nat Chem Biol. 2024 Nov;20(11):1420-1433. doi: 10.1038/s41589-024-01717-y. Epub 2024 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验