Zheng Yuze, Yang Guangqing, Li Pengju, Tian Bozhi
Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.
Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.
理解并利用与活组织相互作用的生物电信号通路和材料的物理化学性质,是推进组织再生的核心。特别是,新兴的生物电子学领域利用这些原理,开发出针对个体患者动态需求的个性化、微创治疗策略。通过将传感和驱动模块集成到灵活的生物相容性设备中,临床医生可以持续监测和调节局部电微环境,从而在无需广泛手术干预的情况下引导再生过程。本综述对基本生物电信号和物理化学因素如何驱动下一代生物电子平台的设计与工程进行了批判性审视。这些平台不仅促进了神经、心脏、肌肉骨骼、皮肤和胃肠道系统中新生组织的形成和成熟,还能使治疗与每种组织类型独特的结构、功能和电生理特征精确匹配。总体而言,这些见解和创新代表了生物学、电子学和材料科学的融合,为提高再生治疗的疗效、特异性和长期稳定性带来了巨大希望,开创了先进组织工程和以患者为中心的再生医学的新时代。