Vivas-Lago Alma, Castaño-Díez Daniel
Basque Centre for Biophysics (CSIC-UPV/EHU), Bilbao, Spain.
Sci Rep. 2025 Feb 14;15(1):5501. doi: 10.1038/s41598-025-86308-0.
This study introduces Ice Finder, a novel tool for quantifying crystalline ice in cryo-electron tomography, addressing a critical gap in existing methodologies. We present the first application of the meta-learning paradigm to this field, demonstrating that diverse tomographic tasks across datasets can be unified under a single meta-learning framework. By leveraging few-shot learning, our approach enhances domain generalization and adaptability to domain shifts, enabling rapid adaptation to new datasets with minimal examples. Ice Finder's performance is evaluated on a comprehensive set of in situ datasets from EMPIAR, showcasing its ease of use, fast processing capabilities, and millisecond inference times.
本研究介绍了Ice Finder,这是一种用于在冷冻电子断层扫描中量化结晶冰的新型工具,填补了现有方法中的关键空白。我们首次将元学习范式应用于该领域,证明跨数据集的各种断层扫描任务可以在单个元学习框架下统一起来。通过利用少样本学习,我们的方法增强了领域泛化能力和对领域转移的适应性,能够以最少的示例快速适应新数据集。在来自EMPIAR的一组全面的原位数据集上评估了Ice Finder的性能,展示了其易用性、快速处理能力和毫秒级推理时间。