Suppr超能文献

使用具有深度监督的双流卷积神经网络模型对膀胱输尿管反流(VUR)进行自动分级

Automated Grading of Vesicoureteral Reflux (VUR) Using a Dual-Stream CNN Model with Deep Supervision.

作者信息

Chen Guangjie, Su Lixian, Wang Shuxin, Liu Xiaoqing, Wu Wenqian, Zhang Fandong, Zhao Yijun, Zhu Linfeng, Zhang Hongbo, Wang Xiaohao, Yu Gang

机构信息

Department of Urology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Deepwise Artificial Intelligence Laboratory, Beijing, China.

出版信息

J Imaging Inform Med. 2025 Feb 14. doi: 10.1007/s10278-025-01438-1.

Abstract

Vesicoureteral reflux (VUR) is a urinary system disorder characterized by the abnormal flow of urine from the bladder back into the ureters and kidneys, often leading to renal complications, particularly in children. Accurate grading of VUR, typically determined through voiding cystourethrography (VCUG), is crucial for effective clinical management and treatment planning. This study proposes a novel multi-head convolutional neural network for the automatic grading of VUR from VCUG images. The model employs a dual-stream architecture with a modified ResNet-50 backbone, enabling independent analysis of the left and right urinary tracts. Our approach categorizes VUR into three distinct classes: no reflux, mild to moderate reflux, and severe reflux. The incorporation of deep supervision within the network enhances feature learning and improves the model's ability to detect subtle variations in VUR patterns. Experimental results indicate that the proposed method effectively grades VUR, achieving an average area under the receiver operating characteristic curve of 0.82 and a patient-level accuracy of 0.84. This provides a reliable tool to support clinical decision-making in pediatric cases.

摘要

膀胱输尿管反流(VUR)是一种泌尿系统疾病,其特征是尿液从膀胱异常回流至输尿管和肾脏,常导致肾脏并发症,尤其是在儿童中。VUR的准确分级通常通过排尿性膀胱尿道造影(VCUG)来确定,这对于有效的临床管理和治疗规划至关重要。本研究提出了一种新型多头卷积神经网络,用于从VCUG图像中自动对VUR进行分级。该模型采用双流架构和改进的ResNet-50主干,能够对左右尿路进行独立分析。我们的方法将VUR分为三个不同类别:无反流、轻度至中度反流和重度反流。网络中引入深度监督可增强特征学习,并提高模型检测VUR模式细微变化的能力。实验结果表明,所提出的方法能有效地对VUR进行分级,受试者工作特征曲线下的平均面积达到0.82,患者水平的准确率为0.84。这为支持儿科病例的临床决策提供了一个可靠的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验