文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

内镜切除和手术治疗后T1期结直肠癌术后复发的生存机器学习模型:一项回顾性队列研究

Survival machine learning model of T1 colorectal postoperative recurrence after endoscopic resection and surgical operation: a retrospective cohort study.

作者信息

Li Zhihong, Aihemaiti Yiliyaer, Yang Qianqian, Ahemai Yiliminuer, Li Zimei, Du Qianqian, Wang Yan, Zhang Hanxiang, Cai Yingbin

机构信息

School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.

The Third Clinical School of Medicine, Xinjiang Medical University, Urumqi, 83000, China.

出版信息

BMC Cancer. 2025 Feb 14;25(1):262. doi: 10.1186/s12885-025-13663-6.


DOI:10.1186/s12885-025-13663-6
PMID:39953493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11827358/
Abstract

OBJECTIVE: To construct a postoperative recurrence prediction model for patients with T1 colorectal cancer after endoscopic resection and surgical operation via survival machine learning algorithms. METHODS: Based on two tertiary-level affiliated hospitals, case data of 580 patients with T1 colorectal cancer treated by endoscopic resection and surgery were obtained, and patients' personal information, treatment modalities, and pathology-related information were extracted. After Boruta's algorithmic feature selection, predictors with significant contributions were identified. The patients were divided into a train set and a test set at a ratio of 7:3, and five survival machine learning models were subsequently built, namely, Randomized Survival Forest (RSF), Gradient Boosting (GB), Survival Tree (ST), CoxPH and Coxnet. Interpretability analysis of the model is based on the SHAP algorithm. RESULTS: Patients at high risk of lymph node metastasis have a poor prognosis, but different treatment modalities do not significantly affect the prognosis of patients with recurrence. The Random Survival Forest model shows better performance, with a C-index and Integrated Brier Score of 0.848 and 0.098 in the test set, respectively, and its time-dependent AUC is 0.918. The interpretability analysis of the model revealed that submucosal invasion depth < 1000 μm, tumor budding grade of BD1, lymphovascular invasion and perineural invasion are absent, well differentiated cancer cells, and tumor size < 20 mm have positive effects on the model, lts negative gain characteristics are a contributing factor to patient relapse. CONCLUSIONS: The prognostic model constructed via survival machine learning for patients with T1 colorectal cancer has good performance, and can provide accurate individualized predictions.

摘要

目的:通过生存机器学习算法构建T1期结直肠癌患者内镜切除及手术后的术后复发预测模型。 方法:基于两家三级甲等附属医院,获取580例接受内镜切除及手术治疗的T1期结直肠癌患者的病例数据,并提取患者的个人信息、治疗方式及病理相关信息。经过Boruta算法特征选择,确定具有显著贡献的预测因子。将患者按7:3的比例分为训练集和测试集,随后构建五个生存机器学习模型,即随机生存森林(RSF)、梯度提升(GB)、生存树(ST)、CoxPH和Coxnet。基于SHAP算法对模型进行可解释性分析。 结果:淋巴结转移高危患者预后较差,但不同治疗方式对复发患者的预后影响不显著。随机生存森林模型表现更佳,测试集中的C指数和综合Brier评分分别为0.848和0.098,其时间依赖性AUC为0.918。模型的可解释性分析显示,黏膜下浸润深度<1000μm、肿瘤芽生分级为BD1、无淋巴管侵犯和神经周侵犯、癌细胞高分化以及肿瘤大小<20mm对模型有正向影响,其负增益特征是患者复发的一个促成因素。 结论:通过生存机器学习为T1期结直肠癌患者构建的预后模型性能良好,能够提供准确的个体化预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/959c296eedd9/12885_2025_13663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/fe2a5acb7477/12885_2025_13663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/bbeef4cecb3e/12885_2025_13663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/2588a9be3746/12885_2025_13663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/c47990b8d4e5/12885_2025_13663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/959c296eedd9/12885_2025_13663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/fe2a5acb7477/12885_2025_13663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/bbeef4cecb3e/12885_2025_13663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/2588a9be3746/12885_2025_13663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/c47990b8d4e5/12885_2025_13663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/11827358/959c296eedd9/12885_2025_13663_Fig5_HTML.jpg

相似文献

[1]
Survival machine learning model of T1 colorectal postoperative recurrence after endoscopic resection and surgical operation: a retrospective cohort study.

BMC Cancer. 2025-2-14

[2]
Resection with en bloc removal of regional lymph node after endoscopic resection for T1 colorectal cancer.

Ann Surg Oncol. 2012-7-7

[3]
Construction of a random survival forest model based on a machine learning algorithm to predict early recurrence after hepatectomy for adult hepatocellular carcinoma.

BMC Cancer. 2024-12-25

[4]
A three-tier classification system based on the depth of submucosal invasion and budding/sprouting can improve the treatment strategy for T1 colorectal cancer: a retrospective multicenter study.

Mod Pathol. 2015-6

[5]
Comparison of the prognosis and lymph node metastasis between no tumor budding and low-grade tumor budding in T1 and T2 colorectal cancer.

Sci Rep. 2025-1-2

[6]
Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection.

World J Gastroenterol. 2025-3-21

[7]
The Risk of Metastatic Recurrence after Non-Curative Endoscopic Resection with Negative Deep Margins for Early Colorectal Cancer: Two-Center Retrospective Cohort Study.

Digestion. 2024

[8]
Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node.

Gastroenterology. 2021-3

[9]
Outcomes of noncurative endoscopic submucosal dissection for T1 colorectal cancer: Prospective, multicenter, cohort study in Japan.

Dig Endosc. 2024-12

[10]
Factors associated with risk for colorectal cancer recurrence after endoscopic resection of T1 tumors.

Clin Gastroenterol Hepatol. 2013-8-17

本文引用的文献

[1]
The prognostic and predictive significance of perineural invasion in stage I to III colon cancer: a propensity score matching-based analysis.

World J Surg Oncol. 2024-5-11

[2]
Oncologic outcomes of screen-detected and non-screen-detected T1 colorectal cancers.

Endoscopy. 2024-7

[3]
Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.

J Med Internet Res. 2023-10-26

[4]
pT1 colorectal cancer: A treatment dilemma.

Best Pract Res Clin Gastroenterol. 2023-10

[5]
A historical perspective of biomedical explainable AI research.

Patterns (N Y). 2023-9-8

[6]
How Does Omitting Additional Surgery After Local Excision Affect the Prognostic Outcome of Patients With High-risk T1 Colorectal Cancer?

Ann Surg. 2024-2-1

[7]
Long-term outcomes of local resection versus surgical resection for high-risk T1 colorectal cancer: a systematic review and meta-analysis.

Gastrointest Endosc. 2023-6

[8]
Lymph node metastasis in T1 colorectal cancer with the only high-risk histology of submucosal invasion depth ≥ 1000 μm.

Int J Colorectal Dis. 2022-11

[9]
Predicting lymph node metastasis and recurrence in patients with early stage colorectal cancer.

Front Med (Lausanne). 2022-9-15

[10]
Putting explainable AI in context: institutional explanations for medical AI.

Ethics Inf Technol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索