School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China.
J Med Internet Res. 2023 Oct 26;25:e44417. doi: 10.2196/44417.
Machine learning (ML) methods have shown great potential in predicting colorectal cancer (CRC) survival. However, the ML models introduced thus far have mainly focused on binary outcomes and have not considered the time-to-event nature of this type of modeling.
This study aims to evaluate the performance of ML approaches for modeling time-to-event survival data and develop transparent models for predicting CRC-specific survival.
The data set used in this retrospective cohort study contains information on patients who were newly diagnosed with CRC between December 28, 2012, and December 27, 2019, at West China Hospital, Sichuan University. We assessed the performance of 6 representative ML models, including random survival forest (RSF), gradient boosting machine (GBM), DeepSurv, DeepHit, neural net-extended time-dependent Cox (or Cox-Time), and neural multitask logistic regression (N-MTLR) in predicting CRC-specific survival. Multiple imputation by chained equations method was applied to handle missing values in variables. Multivariable analysis and clinical experience were used to select significant features associated with CRC survival. Model performance was evaluated in stratified 5-fold cross-validation repeated 5 times by using the time-dependent concordance index, integrated Brier score, calibration curves, and decision curves. The SHapley Additive exPlanations method was applied to calculate feature importance.
A total of 2157 patients with CRC were included in this study. Among the 6 time-to-event ML models, the DeepHit model exhibited the best discriminative ability (time-dependent concordance index 0.789, 95% CI 0.779-0.799) and the RSF model produced better-calibrated survival estimates (integrated Brier score 0.096, 95% CI 0.094-0.099), but these are not statistically significant. Additionally, the RSF, GBM, DeepSurv, Cox-Time, and N-MTLR models have comparable predictive accuracy to the Cox Proportional Hazards model in terms of discrimination and calibration. The calibration curves showed that all the ML models exhibited good 5-year survival calibration. The decision curves for CRC-specific survival at 5 years showed that all the ML models, especially RSF, had higher net benefits than default strategies of treating all or no patients at a range of clinically reasonable risk thresholds. The SHapley Additive exPlanations method revealed that R0 resection, tumor-node-metastasis staging, and the number of positive lymph nodes were important factors for 5-year CRC-specific survival.
This study showed the potential of applying time-to-event ML predictive algorithms to help predict CRC-specific survival. The RSF, GBM, Cox-Time, and N-MTLR algorithms could provide nonparametric alternatives to the Cox Proportional Hazards model in estimating the survival probability of patients with CRC. The transparent time-to-event ML models help clinicians to more accurately predict the survival rate for these patients and improve patient outcomes by enabling personalized treatment plans that are informed by explainable ML models.
机器学习(ML)方法在预测结直肠癌(CRC)生存方面显示出巨大潜力。然而,到目前为止引入的 ML 模型主要集中在二分类结果上,并且没有考虑到这种建模的事件时间性质。
本研究旨在评估用于建模事件时间生存数据的 ML 方法的性能,并开发用于预测 CRC 特异性生存的透明模型。
本回顾性队列研究的数据集中包含了 2012 年 12 月 28 日至 2019 年 12 月 27 日期间在四川大学华西医院新诊断为 CRC 的患者的信息。我们评估了 6 种代表性的 ML 模型,包括随机生存森林(RSF)、梯度提升机(GBM)、DeepSurv、DeepHit、神经网扩展时间相关 Cox(或 Cox-Time)和神经多任务逻辑回归(N-MTLR)在预测 CRC 特异性生存方面的性能。使用多变量分析和临床经验选择与 CRC 生存相关的显著特征。通过重复 5 次的分层 5 折交叉验证,使用时间相关一致性指数、综合 Brier 评分、校准曲线和决策曲线评估模型性能。应用 Shapley 加法解释方法计算特征重要性。
本研究共纳入 2157 例 CRC 患者。在 6 种时间事件 ML 模型中,DeepHit 模型表现出最佳的区分能力(时间相关一致性指数 0.789,95%CI 0.779-0.799),RSF 模型产生了更好的校准生存估计(综合 Brier 评分 0.096,95%CI 0.094-0.099),但这些差异不具有统计学意义。此外,RSF、GBM、DeepSurv、Cox-Time 和 N-MTLR 模型在区分和校准方面与 Cox 比例风险模型具有相当的预测准确性。校准曲线显示,所有 ML 模型在 5 年内都表现出良好的生存校准。CRC 特异性生存的决策曲线在 5 年内表明,所有 ML 模型,特别是 RSF,在一系列临床合理风险阈值下,比所有患者或无患者的默认治疗策略具有更高的净收益。Shapley 加法解释方法表明,R0 切除术、肿瘤-淋巴结-转移分期和阳性淋巴结数量是 5 年 CRC 特异性生存的重要因素。
本研究表明,应用时间事件 ML 预测算法有可能帮助预测 CRC 特异性生存。RSF、GBM、Cox-Time 和 N-MTLR 算法可以为 Cox 比例风险模型提供非参数替代方案,用于估计 CRC 患者的生存概率。透明的时间事件 ML 模型通过生成基于可解释的 ML 模型的个性化治疗计划,帮助临床医生更准确地预测这些患者的生存率,并改善患者的预后。