Suppr超能文献

猪场环境中耐药基因组研究的方法学方面

Methodological aspects of investigating the resistome in pig farm environments.

作者信息

Ladyhina Valeriia, Rajala Elisabeth, Sternberg-Lewerin Susanna, Nasirzadeh Leila, Bongcam-Rudloff Erik, Dicksved Johan

机构信息

Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden.

Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.

出版信息

J Microbiol Methods. 2025 Mar-Apr;230-231:107103. doi: 10.1016/j.mimet.2025.107103. Epub 2025 Feb 13.

Abstract

A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, and the environment attracts significant research attention. The animal sector is one of the major contributors to the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions about the epidemiology of AMR in farm environments remain unanswered. This is connected to several methodological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible research on the resistome in complex samples from the indoor farm environment. The work included optimizing sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching against multiple ARG databases is essential for detecting the highest diversity of ARGs.

摘要

作为一个典型的“同一健康”问题,抗菌药物耐药性(AMR)的产生及其在人类、动物和环境中的传播引起了大量研究关注。动物领域是AMR产生和传播的主要促成因素之一,占全球抗生素使用量的50%以上。抗生素的使用对暴露微生物群中的耐药菌施加了选择压力,但关于农场环境中AMR流行病学的许多问题仍未得到解答。这与几个方法学挑战和局限性有关,例如采样方法不一致、农场环境样本的复杂性以及缺乏样本采集、处理和生物信息学分析的标准化方案。在本项目中,我们结合宏基因组学和生物信息学,优化了对室内农场环境复杂样本中耐药基因组进行可重复研究的方法。这项工作包括优化样本采集、运输和储存,以及DNA提取、测序和生物信息学分析,如宏基因组组装和抗生素抗性基因(ARG)检测。我们的研究表明,目前用于ARG搜索的最优且最具成本效益的流程应基于对袜子样本材料进行高深度的Illumina测序(对于AMR基因家族至少为25M 250bp PE,对于基因变体为43M)。我们提出了一种利用MEGAHIT组装的计算分析方法,以平衡携带ARG的细菌的鉴定与抗性基因多样性和丰度的潜在损失。我们的研究结果表明,针对多个ARG数据库进行搜索对于检测最高多样性的ARG至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验