Lukeman Hannah, Al-Wassiti Hareth, Fabb Stewart A, Lim Leonard, Wang Trixie, Britton Warwick J, Steain Megan, Pouton Colin W, Triccas James A, Counoupas Claudio
Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia.
EBioMedicine. 2025 Mar;113:105599. doi: 10.1016/j.ebiom.2025.105599. Epub 2025 Feb 15.
Mycobacterium tuberculosis remains the largest infectious cause of mortality worldwide, even with over a century of widespread administration of the only licenced tuberculosis (TB) vaccine, Bacillus Calmette-Guérin (BCG). mRNA technology remains an underexplored approach for combating chronic bacterial infections such as TB.
We have developed a lipid nanoparticle (LNP)-mRNA vaccine, termed mRNA, encoding for the M. tuberculosis CysVac2 fusion protein, which we have previously formulated as an adjuvanted subunit vaccine. This LNP-mRNA vaccine was administered intramuscularly to female C57BL/6 mice as a standalone vaccine or as booster to BCG to assess immunogenicity and efficacy of the construct.
Vaccination with mRNA induced high frequencies of polyfunctional, antigen-specific Th1 CD4 T cells in the blood and lungs, which was associated with the rapid recruitment of both innate and adaptive immune cells to lymph nodes draining the site of immunisation. mRNA vaccination also provided significant pulmonary protection in M. tuberculosis-infected mice, reducing bacterial load and inflammatory infiltration in the lungs. Importantly, mRNA enhanced immune responses and long-term protection when used to boost BCG-primed mice.
These findings of a protective LNP-mRNA vaccine for TB highlight the potential of the LNP-mRNA platform for TB control and support further research to facilitate translation to humans.
This work was supported by the NHMRC Centre of Research Excellence in Tuberculosis Control to JAT and WJB (APP1153493), and MRFF mRNA Clinical Trial Enabling Infrastructure grant to CWP and HAW (MRFCTI000006).
尽管唯一获得许可的结核病(TB)疫苗卡介苗(BCG)已广泛接种一个多世纪,但结核分枝杆菌仍是全球最大的感染性死亡原因。信使核糖核酸(mRNA)技术在对抗如结核病这类慢性细菌感染方面仍是一种未充分探索的方法。
我们研发了一种脂质纳米颗粒(LNP)-mRNA疫苗,称为mRNA,其编码结核分枝杆菌CysVac2融合蛋白,我们之前已将该融合蛋白制备成一种佐剂亚单位疫苗。将这种LNP-mRNA疫苗作为单一疫苗或作为卡介苗的加强疫苗,通过肌肉注射给予雌性C57BL/6小鼠,以评估该构建体的免疫原性和功效。
用mRNA疫苗接种可在血液和肺中诱导产生高频率的多功能、抗原特异性Th1 CD4 T细胞,这与先天免疫细胞和适应性免疫细胞迅速募集到免疫接种部位引流的淋巴结有关。mRNA疫苗接种还为感染结核分枝杆菌的小鼠提供了显著的肺部保护,减少了肺部的细菌载量和炎症浸润。重要的是,当用于加强卡介苗初免的小鼠时,mRNA增强了免疫反应并提供了长期保护。
这些关于一种用于结核病的保护性LNP-mRNA疫苗的研究结果突出了LNP-mRNA平台在结核病防控方面的潜力,并支持进一步开展研究以促进向人体转化。
这项工作得到了澳大利亚国家卫生与医学研究委员会(NHMRC)结核病控制卓越研究中心对JAT和WJB的资助(项目编号APP1153493),以及澳大利亚医学研究未来基金(MRFF)mRNA临床试验支持基础设施资助对CWP和HAW的资助(项目编号MRFCTI000006)。