Suppr超能文献

一个包含基于面积的乳房密度值、乳房面积和致密组织分割掩码的乳腺钼靶图像数据集。

A dataset of mammography images with area-based breast density values, breast area, and dense tissue segmentation masks.

作者信息

Behravan Hamid, Gudhe Naga Raju, Okuma Hidemi, Sudah Mazen, Mannermaa Arto

机构信息

Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer Research Community RC Cancer, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.

Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 100, Kuopio 70029, Finland.

出版信息

Data Brief. 2024 Sep 30;57:110980. doi: 10.1016/j.dib.2024.110980. eCollection 2024 Dec.

Abstract

A new dataset is presented to propel research in automated breast density estimation, a crucial factor in mammogram interpretation. Mammography, a low-dose X-ray technique for breast cancer screening, can be affected by breast density. Dense tissue appears white on mammograms, potentially obscuring tumors. This dataset, built upon the public VinDr-Mammo dataset, offers 745 mammogram images (including training and test sets) along with expert-radiologist annotations for both the entire breast and dense tissue regions. Researchers can leverage this dataset for multiple purposes: training deep learning models for automated breast density analysis, refining segmentation methods for accurate delineation of breast tissue, and benchmarking existing and novel breast density estimation algorithms. This resource holds promise for improving breast cancer screening through advancements in automated breast density analysis.

摘要

一个新的数据集被提出,以推动自动乳腺密度估计的研究,这是乳房X光检查解读中的一个关键因素。乳房X光检查是一种用于乳腺癌筛查的低剂量X射线技术,可能会受到乳腺密度的影响。致密组织在乳房X光片上显示为白色,可能会掩盖肿瘤。这个基于公开的VinDr-Mammo数据集构建的数据集提供了745张乳房X光图像(包括训练集和测试集),以及针对整个乳房和致密组织区域的专家放射科医生注释。研究人员可以将这个数据集用于多种目的:训练用于自动乳腺密度分析的深度学习模型,改进用于精确描绘乳腺组织的分割方法,以及对现有和新颖的乳腺密度估计算法进行基准测试。通过自动乳腺密度分析的进步,这一资源有望改善乳腺癌筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8378/11827099/d5ada3950471/gr1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验