Suppr超能文献

基于面积的乳腺百分比密度估计算法在乳腺 X 光片中的应用:使用重量自适应多任务学习。

Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning.

机构信息

Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer Research community, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.

Department of Clinical Radiology, Kuopio University Hospital, P.O. Box 100, 70029, Kuopio, Finland.

出版信息

Sci Rep. 2022 Jul 14;12(1):12060. doi: 10.1038/s41598-022-16141-2.

Abstract

Breast density, which is a measure of the relative amount of fibroglandular tissue within the breast area, is one of the most important breast cancer risk factors. Accurate segmentation of fibroglandular tissues and breast area is crucial for computing the breast density. Semiautomatic and fully automatic computer-aided design tools have been developed to estimate the percentage of breast density in mammograms. However, the available approaches are usually limited to specific mammogram views and are inadequate for complete delineation of the pectoral muscle. These tools also perform poorly in cases of data variability and often require an experienced radiologist to adjust the segmentation threshold for fibroglandular tissue within the breast area. This study proposes a new deep learning architecture that automatically estimates the area-based breast percentage density from mammograms using a weight-adaptive multitask learning approach. The proposed approach simultaneously segments the breast and dense tissues and further estimates the breast percentage density. We evaluate the performance of the proposed model in both segmentation and density estimation on an independent evaluation set of 7500 craniocaudal and mediolateral oblique-view mammograms from Kuopio University Hospital, Finland. The proposed multitask segmentation approach outperforms and achieves average relative improvements of 2.88% and 9.78% in terms of F-score compared to the multitask U-net and a fully convolutional neural network, respectively. The estimated breast density values using our approach strongly correlate with radiologists' assessments with a Pearson's correlation of [Formula: see text] (95% confidence interval [0.89, 0.91]). We conclude that our approach greatly improves the segmentation accuracy of the breast area and dense tissues; thus, it can play a vital role in accurately computing the breast density. Our density estimation model considerably reduces the time and effort needed to estimate density values from mammograms by radiologists and therefore, decreases inter- and intra-reader variability.

摘要

乳房密度是乳房区域内纤维腺体组织相对含量的一个衡量标准,是最重要的乳腺癌风险因素之一。准确分割纤维腺体组织和乳房区域对于计算乳房密度至关重要。已经开发了半自动和全自动计算机辅助设计工具来估计乳房 X 光片中的乳房密度百分比。然而,现有的方法通常仅限于特定的乳房 X 光视图,并且不足以完全描绘胸肌。这些工具在数据可变性的情况下表现不佳,并且通常需要经验丰富的放射科医生来调整乳房区域内纤维腺体组织的分割阈值。本研究提出了一种新的深度学习架构,该架构使用加权自适应多任务学习方法自动从乳房 X 光片中估计基于面积的乳房百分比密度。所提出的方法同时分割乳房和致密组织,并进一步估计乳房百分比密度。我们在来自芬兰于韦斯屈莱大学医院的 7500 张头尾位和内外斜位乳房 X 光片的独立评估集上评估了所提出模型在分割和密度估计方面的性能。所提出的多任务分割方法在 F 分数方面优于多任务 U-Net 和全卷积神经网络,平均相对改进分别为 2.88%和 9.78%。我们的方法使用的估计乳房密度值与放射科医生的评估强烈相关,皮尔逊相关系数为[公式:见文本](95%置信区间[0.89,0.91])。我们得出结论,我们的方法大大提高了乳房区域和致密组织的分割准确性;因此,它可以在准确计算乳房密度方面发挥重要作用。我们的密度估计模型大大减少了放射科医生从乳房 X 光片中估计密度值所需的时间和精力,从而降低了读者之间和读者内部的可变性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aedb/9283472/0be490cdda0e/41598_2022_16141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验