Oza Parita, Oza Urvi, Oza Rajiv, Sharma Paawan, Patel Samir, Kumar Pankaj, Gohel Bakul
Nirma University, Ahmedabad, India.
Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India.
Biomed Eng Lett. 2023 Dec 21;14(2):317-330. doi: 10.1007/s13534-023-00339-y. eCollection 2024 Mar.
In the last two decades, computer-aided detection and diagnosis (CAD) systems have been created to help radiologists discover and diagnose lesions observed on breast imaging tests. These systems can serve as a second opinion tool for the radiologist. However, developing algorithms for identifying and diagnosing breast lesions relies heavily on mammographic datasets. Many existing databases do not consider all the needs necessary for research and study, such as mammographic masks, radiology reports, breast composition, etc. This paper aims to introduce and describe a new mammographic database. The proposed dataset comprises mammograms with several lesions, such as masses, calcifications, architectural distortions, and asymmetries. In addition, a radiologist report is provided, describing the details of the breast, such as breast density, description of abnormality present, condition of the skin, nipple and pectoral muscles, etc., for each mammogram. We present results of commonly used segmentation framework trained on our proposed dataset. We used information regarding the class of abnormalities (benign or malignant) and breast tissue density provided with each mammogram to analyze the segmentation model's performance concerning these parameters. The presented dataset provides diverse mammogram images to develop and train models for breast cancer diagnosis applications.
在过去二十年中,已经创建了计算机辅助检测和诊断(CAD)系统,以帮助放射科医生发现和诊断在乳房成像检查中观察到的病变。这些系统可以作为放射科医生的第二意见工具。然而,开发用于识别和诊断乳房病变的算法严重依赖于乳腺X线摄影数据集。许多现有数据库并未考虑研究和学习所需的所有必要信息,例如乳腺X线摄影掩膜、放射学报告、乳房组成等。本文旨在介绍和描述一个新的乳腺X线摄影数据库。所提出的数据集包括含有多种病变的乳腺X线照片,如肿块、钙化、结构扭曲和不对称等。此外,还提供了一份放射科医生报告,描述了每张乳腺X线照片中乳房的详细信息,如乳房密度、存在的异常描述、皮肤、乳头和胸肌的状况等。我们展示了在我们提出的数据集上训练的常用分割框架的结果。我们使用了与每张乳腺X线照片提供的异常类别(良性或恶性)和乳房组织密度相关的信息,来分析分割模型在这些参数方面的性能。所呈现的数据集提供了多样化的乳腺X线照片图像,以开发和训练用于乳腺癌诊断应用的模型。