Maqbool Qaisar, Yigit Nevzat, Stöger-Pollach Michael, Ruello Maria Letizia, Tittarelli Francesca, Rupprechter Günther
Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche INSTM Research Unit, via Brecce Bianche 12 60131 Ancona Italy.
Institute of Materials Chemistry TU Wien, Getreidemarkt 9/BC A-1060 Vienna Austria
Catal Sci Technol. 2022 Dec 14;13(3):624-636. doi: 10.1039/d2cy01395a. eCollection 2023 Feb 6.
The sensing of volatile organic compounds by composites containing metal oxide semiconductors is typically explained adsorption-desorption and surface electrochemical reactions changing the sensor's resistance. The analysis of molecular processes on chemiresistive gas sensors is often based on indirect evidence, whereas or studies monitoring the gas/surface interactions enable a direct insight. Here we report a cross-disciplinary approach employing spectroscopy of working sensors to investigate room temperature methanol detection, contrasting well-characterized nanocomposite (TiO@rGO-NC) and reduced-graphene oxide (rGO) sensors. Methanol interactions with the sensors were examined by (quasi) -DRIFTS and -ATR-FTIR spectroscopy, the first paralleled by simultaneous measurements of resistance. The sensing mechanism was also studied by mass spectroscopy (MS), revealing the surface electrochemical reactions. The and spectroscopy techniques demonstrated that the sensing mechanism on the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O depletion-restoration due to a surface electrochemical reaction forming CO and HO.
含有金属氧化物半导体的复合材料对挥发性有机化合物的传感通常解释为吸附-解吸和表面电化学反应会改变传感器的电阻。对化学电阻式气体传感器上分子过程的分析通常基于间接证据,而监测气体/表面相互作用的研究能够提供直接的见解。在此,我们报告了一种跨学科方法,采用工作传感器的光谱学来研究室温下甲醇的检测,对比了特征明确的纳米复合材料(TiO@rGO-NC)传感器和还原氧化石墨烯(rGO)传感器。通过(准)漫反射红外傅里叶变换光谱(-DRIFTS)和衰减全反射傅里叶变换红外光谱(-ATR-FTIR)研究了甲醇与传感器的相互作用,同时通过电阻同步测量对前者进行了研究。还通过质谱(MS)研究了传感机制,揭示了表面电化学反应。漫反射红外傅里叶变换光谱和衰减全反射傅里叶变换红外光谱技术表明,纳米复合材料上的传感机制依赖于甲醇可逆物理吸附和不可逆化学吸附的综合作用、传感器随时间的改性以及由于形成CO和HO的表面电化学反应导致的电子/O耗尽-恢复。