Suppr超能文献

使用预测-校正方法估计空间聚集的相对风险。

Estimating the Relative Risks of Spatial Clusters Using a Predictor-Corrector Method.

作者信息

Bani-Yaghoub Majid, Rekab Kamel, Pluta Julia, Tabharit Said

机构信息

Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA.

出版信息

Mathematics (Basel). 2025;13(2). doi: 10.3390/math13020180.

Abstract

Spatial, temporal, and space-time scan statistics can be used for geographical surveillance, identifying temporal and spatial patterns, and detecting outliers. While statistical cluster analysis is a valuable tool for identifying patterns, optimizing resource allocation, and supporting decision-making, accurately predicting future spatial clusters remains a significant challenge. Given the known relative risks of spatial clusters over the past time intervals, the main objective of the present study is to predict the relative risks for the subsequent interval, . Building on our prior research, we propose a predictive Markov chain model with an embedded corrector component. This corrector utilizes either multiple linear regression or exponential smoothing method, selecting the one that minimizes the relative distance between observed and predicted values in the -th interval. To test the proposed method, we first calculated the relative risks of statistically significant spatial clusters of COVID-19 mortality in the U.S. over seven time intervals from May 2020 to March 2023. Then, for each time interval, we selected the top 25 clusters with the highest relative risks and iteratively predicted the relative risks of clusters from intervals three to seven. The predictive accuracies ranged from moderate to high, indicating the potential applicability of this method for predictive disease analytics and future pandemic preparedness.

摘要

空间、时间和时空扫描统计可用于地理监测、识别时空模式以及检测异常值。虽然统计聚类分析是识别模式、优化资源分配和支持决策的宝贵工具,但准确预测未来的空间聚类仍然是一项重大挑战。鉴于过去时间间隔内空间聚类的已知相对风险,本研究的主要目标是预测后续间隔的相对风险。基于我们之前的研究,我们提出了一种带有嵌入式校正器组件的预测马尔可夫链模型。该校正器使用多元线性回归或指数平滑方法,选择使第 个间隔内观测值与预测值之间相对距离最小的方法。为了测试所提出的方法,我们首先计算了2020年5月至2023年3月七个时间间隔内美国新冠肺炎死亡率具有统计学意义的空间聚类的相对风险。然后,对于每个时间间隔,我们选择相对风险最高的前25个聚类,并迭代预测从第三个到第七个间隔的聚类相对风险。预测准确率从中等到高,表明该方法在预测疾病分析和未来大流行防范方面具有潜在的适用性。

相似文献

1
Estimating the Relative Risks of Spatial Clusters Using a Predictor-Corrector Method.
Mathematics (Basel). 2025;13(2). doi: 10.3390/math13020180.
4
Geographic disparities in COVID-19 testing and outcomes in Florida.
BMC Public Health. 2023 Jan 11;23(1):79. doi: 10.1186/s12889-022-14450-9.
5
Spatio-temporal visualisation of cutaneous leishmaniasis in an endemic, urban area in Iran.
Acta Trop. 2022 Jan;225:106181. doi: 10.1016/j.actatropica.2021.106181. Epub 2021 Oct 20.
9
Relative risk estimates from spatial and space-time scan statistics: are they biased?
Stat Med. 2014 Jul 10;33(15):2634-44. doi: 10.1002/sim.6143. Epub 2014 Mar 18.
10
Geographic disparities and temporal changes of COVID-19 incidence risks in North Dakota, United States.
BMC Public Health. 2023 Apr 20;23(1):720. doi: 10.1186/s12889-023-15571-5.

引用本文的文献

本文引用的文献

1
Incorporating global dynamics to improve the accuracy of disease models: Example of a COVID-19 SIR model.
PLoS One. 2022 Apr 8;17(4):e0265815. doi: 10.1371/journal.pone.0265815. eCollection 2022.
4
COVID-19 Vaccine Booster: To Boost or Not to Boost.
Infect Dis Rep. 2021 Oct 28;13(4):924-929. doi: 10.3390/idr13040084.
6
COVID-19 Vaccine Breakthrough Infections Reported to CDC - United States, January 1-April 30, 2021.
MMWR Morb Mortal Wkly Rep. 2021 May 28;70(21):792-793. doi: 10.15585/mmwr.mm7021e3.
7
CDC Interim Recommendations for Fully Vaccinated People: An Important First Step.
JAMA. 2021 Apr 20;325(15):1501-1502. doi: 10.1001/jama.2021.4367.
8
Measuring the Success of the US COVID-19 Vaccine Campaign-It's Time to Invest in and Strengthen Immunization Information Systems.
Am J Public Health. 2021 Jun;111(6):1078-1080. doi: 10.2105/AJPH.2021.306177. Epub 2021 Feb 18.
9
Epidemic and control of COVID-19 in Niger: quantitative analyses in a least developed country.
J Glob Health. 2020 Dec;10(2):020513. doi: 10.7189/jogh.10.020513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验