Pang Jiahui, Chen Shuru, Gan Weiqiang, Tang Guofang, Jie Yusheng, Li Zhanyi, Chong Yutian, Chen Youming, Gong Jiao, Li Xinhua, Mei Yongyu
Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
Liver Res. 2023 Feb 24;7(1):82-89. doi: 10.1016/j.livres.2023.02.003. eCollection 2023 Mar.
There is currently no single model for predicting Wilson's disease (WD). We aimed to create a nomogram using daily clinical parameters to improve the accuracy of WD diagnosis in patients with abnormal liver function.
Between July 2016 and December 2020, we identified 90 WD patients with abnormal liver function who had homozygous or compound heterozygous mutations in the gene. The control group included 128 patients with similar liver function but no WD during the same time period. To create a nomogram, we screened potential predictive variables using the least absolute shrinkage and selection operator model and multivariate logistic regression.
We developed a nomogram for screening for WD based on six predictive factors: serum copper, direct bilirubin, uric acid, cholinesterase, prealbumin, and reticulocyte percentage. In the training cohort, the area under curve (AUC) of the nomogram reached 0.967 (95% confidence interval (CI) 0.946-0.988), while the area under the precision-recall curve was 0.961. Based on the optimal cutpoint of 213.55, our nomogram performed well, with a sensitivity of 96% and a specificity of 87%. In the validation cohort, the AUC of the nomogram was as high as 0.991 (95% CI 0.970-1.000).
We developed a nomogram that can predict the risk of WD prior to the detection of serum ceruloplasmin or urinary copper, greatly increasing screening efficiency for patients with abnormal liver function.
目前尚无单一模型可用于预测威尔逊病(WD)。我们旨在利用日常临床参数创建一个列线图,以提高肝功能异常患者WD诊断的准确性。
在2016年7月至2020年12月期间,我们确定了90例肝功能异常且该基因存在纯合或复合杂合突变的WD患者。对照组包括128例同期肝功能相似但无WD的患者。为创建列线图,我们使用最小绝对收缩和选择算子模型及多变量逻辑回归筛选潜在预测变量。
我们基于六个预测因素(血清铜、直接胆红素、尿酸、胆碱酯酶、前白蛋白和网织红细胞百分比)开发了一个用于筛查WD的列线图。在训练队列中,列线图的曲线下面积(AUC)达到0.967(95%置信区间(CI)0.946 - 0.988),而精确召回率曲线下面积为0.961。基于213.55的最佳切点,我们的列线图表现良好,灵敏度为96%,特异度为87%。在验证队列中,列线图的AUC高达0.991(95% CI 0.970 - 1.000)。
我们开发的列线图可在血清铜蓝蛋白或尿铜检测之前预测WD风险,极大提高了肝功能异常患者的筛查效率。