Suppr超能文献

超越CT身体成分分析:利用风格迁移将基于CT的全自动身体成分分析应用于T2加权MRI序列。

Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences.

作者信息

Haubold Johannes, Pollok Olivia Barbara, Holtkamp Mathias, Salhöfer Luca, Schmidt Cynthia Sabrina, Bojahr Christian, Straus Jannis, Schaarschmidt Benedikt Michael, Borys Katarzyna, Kohnke Judith, Wen Yutong, Opitz Marcel, Umutlu Lale, Forsting Michael, Friedrich Christoph M, Nensa Felix, Hosch René

机构信息

From the Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany (J.H., O.B.P., M.H., L.S., C.B., J.S., B.M.S., K.B., J.K., M.O., L.U., M.F., F.N., R.H.); Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H., O.B.P., M.H., L.S., C.S.S., C.B., J.S., K.B., J.K., Y.W., M.O., L.U., M.F., F.N., R.H.); Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany (C.S.S.); Center of Sleep and Telemedicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany (C.S.S.); Data Integration Center, Central IT Department, University Hospital Essen, Essen, Germany (Y.W.); Department of Computer Science, University of Applied Sciences and Arts Dortmund (FHDO), Dortmund, Germany (C.M.F.); and Institute for Medical Informatics, Biometry, and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany (C.M.F.).

出版信息

Invest Radiol. 2025 Aug 1;60(8):552-559. doi: 10.1097/RLI.0000000000001162. Epub 2025 Feb 18.

Abstract

OBJECTIVES

Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences.

METHODS

Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models.

RESULTS

The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914-0.937), muscle 0.968 (95% CI, 0.961-0.975), subcutaneous fat 0.98 (95% CI, 0.971-0.986), nervous system 0.973 (95% CI, 0.965-0.98), thoracic cavity 0.978 (95% CI, 0.969-0.984), abdominal cavity 0.989 (95% CI, 0.986-0.991), mediastinum 0.92 (95% CI, 0.901-0.936), pericardium 0.945 (95% CI, 0.924-0.96), brain 0.966 (95% CI, 0.927-0.989), and glands 0.905 (95% CI, 0.886-0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937-0.965), head + neck 0.965 (95% CI, 0.953-0.976), legs 0.978 (95% CI, 0.968-0.988), and torso 0.99 (95% CI, 0.988-0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes.

CONCLUSIONS

The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.

摘要

目的

深度学习在身体成分分析(BCA)中的应用在临床研究中越来越受到关注,它提供了快速且自动化的方法来测量诸如肌肉或脂肪体积等身体特征。然而,当前大多数方法更倾向于使用计算机断层扫描(CT)而非磁共振成像(MRI)。本研究提出了一种使用磁共振T2加权序列进行自动BCA的深度学习方法。

方法

通过将来自身体和器官分析(BOA)模型的CT分割映射到使用内部训练的CycleGAN创建的合成MR图像上,生成初始BCA分割(10个身体区域和4个身体部位)。总共使用30对合成数据对来训练一个初始的3D nnU-Net V2,然后将这个初步模型应用于分割120例患者(46%为女性)的120个真实T2加权MRI序列,这些患者的年龄中位数为56岁(四分位间距为17.75),从而生成早期分割建议。这些建议由人工注释者进行细化,然后使用5折交叉验证在这个优化后的真实MR图像数据集上训练nnU-Net V2 2D和3D模型。使用 Sørensen-Dice、表面Dice和豪斯多夫距离度量来评估性能,包括交叉验证和集成模型的95%置信区间。

结果

3D集成分割模型在身体区域类别中获得了最高的Dice分数:骨骼为0.926(95%置信区间[CI],0.914 - 0.937),肌肉为0.968(95% CI,0.961 - 0.975),皮下脂肪为0.98(95% CI,0.971 - 0.986),神经系统为0.973(95% CI,0.965 - 0.98),胸腔为0.978(95% CI,0.969 - 0.984),腹腔为0.989(95% CI,0.986 - 0.991),纵隔为0.92(95% CI,0.901 - 0.936),心包为0.945(95% CI,0.924 - 0.96),大脑为0.966(95% CI,0.927 - 0.989),腺体为0.905(95% CI,0.886 - 0.921)。此外,身体部位2D集成模型在所有标签中获得了最高的Dice分数:手臂为0.952(95% CI,0.937 - 0.965),头部 + 颈部为0.965(95% CI,0.953 - 0.976),腿部为0.978(95% CI,0.968 - 0.988),躯干为0.99(95% CI,0.988 - 0.991)。身体部位(2D = 0.971,3D = 0.969,P = 无显著差异)和身体区域(2D = 0.935,3D = 0.955,P < 0.001)集成模型的总体平均Dice表明所有类别具有稳定的性能。

结论

所提出的方法有助于从T2加权MRI序列中高效且自动地提取BCA参数,提供跨不同区域和身体部位的精确且详细的身体成分信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验