Suppr超能文献

视频荧光吞咽造影研究分析中的人工智能:综述

Artificial Intelligence in Videofluoroscopy Swallow Study Analysis: A Comprehensive Review.

作者信息

Sanjeevi G, Gopalakrishnan Uma, Pathinarupothi Rahul Krishnan, Iyer K Subramania

机构信息

Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri, India.

Department of Head and Neck Surgery, Amrita Institute of Medical Sciences and Research Center, Kochi, India.

出版信息

Dysphagia. 2025 Feb 17. doi: 10.1007/s00455-025-10812-8.

Abstract

Videofluoroscopic Swallowing Study (VFSS) is considered the gold standard for diagnosing swallowing disorders, or dysphagia. However, the interpretation of VFSS is susceptible to human bias and subjectivity, resulting in significant inter- and intra-patient variability. In this context, artificial intelligence (AI) has emerged as a potentially valuable tool for physicians. This study reviews state-of-the-art research utilizing AI to analyze VFSS for the assessment of swallowing disorders and to support clinical decision-making. Our comprehensive analysis highlights substantial progress in areas such as pharyngeal phase detection, segmentation and identification of the bolus and hyoid bone, and penetration-aspiration detection. Despite these advancements, an end-to-end automated AI tool for VFSS analysis has yet to be developed. However, there is considerable potential for AI applications in areas like exploring the clinical relevance of segmented or tracked components and expanding the scope to include more upper aerodigestive components in the analysis. Additionally, we discuss the limitations of current research, including the lack of publicly available datasets, the need to address the generalizability of AI models, the integration of cutting-edge AI techniques, and the clinical implications for speech-language pathologists.

摘要

视频荧光吞咽造影检查(VFSS)被认为是诊断吞咽障碍(即吞咽困难)的金标准。然而,VFSS的解读容易受到人为偏差和主观性的影响,导致患者之间以及同一患者内部存在显著差异。在这种背景下,人工智能(AI)已成为医生潜在的宝贵工具。本研究回顾了利用AI分析VFSS以评估吞咽障碍并支持临床决策的前沿研究。我们的综合分析突出了在咽期检测、食团和舌骨的分割与识别以及误吸检测等领域取得的重大进展。尽管有这些进展,但用于VFSS分析的端到端自动化AI工具尚未开发出来。然而,AI在探索分割或跟踪组件的临床相关性以及扩大分析范围以纳入更多上呼吸消化道组件等领域具有相当大的应用潜力。此外,我们还讨论了当前研究的局限性,包括缺乏公开可用的数据集、需要解决AI模型的通用性、前沿AI技术的整合以及对言语治疗师的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验