Suppr超能文献

基于深度学习的透视荧光图像中颈椎的自动标注。

Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning.

机构信息

Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.

Department of Communication Science and Disorders, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA.

出版信息

Med Image Anal. 2021 Dec;74:102218. doi: 10.1016/j.media.2021.102218. Epub 2021 Aug 25.

Abstract

Judging swallowing kinematic impairments via videofluoroscopy represents the gold standard for the detection and evaluation of swallowing disorders. However, the efficiency and accuracy of such a biomechanical kinematic analysis vary significantly among human judges affected mainly by their training and experience. Here, we showed that a novel machine learning algorithm can with high accuracy automatically detect key anatomical points needed for a routine swallowing assessment in real-time. We trained a novel two-stage convolutional neural network to localize and measure the vertebral bodies using 1518 swallowing videofluoroscopies from 265 patients. Our network model yielded high accuracy as the mean distance between predicted points and annotations was 4.20 ± 5.54 pixels. In comparison, human inter-rater error was 4.35 ± 3.12 pixels. Furthermore, 93% of predicted points were less than five pixels from annotated pixels when tested on an independent dataset from 70 subjects. Our model offers more choices for speech language pathologists in their routine clinical swallowing assessments as it provides an efficient and accurate method for anatomic landmark localization in real-time, a task previously accomplished using an off-line time-sinking procedure.

摘要

通过视频透视法判断吞咽运动障碍代表了检测和评估吞咽障碍的金标准。然而,这种生物力学运动分析的效率和准确性在很大程度上因人类裁判的训练和经验而异。在这里,我们展示了一种新的机器学习算法可以非常准确地自动实时检测常规吞咽评估所需的关键解剖点。我们使用来自 265 名患者的 1518 次吞咽透视视频训练了一个新的两阶段卷积神经网络来定位和测量椎体。我们的网络模型具有很高的准确性,因为预测点与注释之间的平均距离为 4.20 ± 5.54 像素。相比之下,人类裁判之间的误差为 4.35 ± 3.12 像素。此外,当在来自 70 名受试者的独立数据集上进行测试时,93%的预测点与注释点之间的距离小于 5 个像素。我们的模型为言语病理学家在常规临床吞咽评估中提供了更多选择,因为它提供了一种高效、准确的实时解剖标志定位方法,而这项任务以前是通过耗时的离线程序完成的。

相似文献

9
Fully automatic cervical vertebrae segmentation framework for X-ray images.全自动 X 射线图像颈椎骨分割框架。
Comput Methods Programs Biomed. 2018 Apr;157:95-111. doi: 10.1016/j.cmpb.2018.01.006. Epub 2018 Jan 12.

本文引用的文献

1
Data Augmentation for Brain-Tumor Segmentation: A Review.用于脑肿瘤分割的数据增强:综述
Front Comput Neurosci. 2019 Dec 11;13:83. doi: 10.3389/fncom.2019.00083. eCollection 2019.
2
Artificial intelligence and machine learning in spine research.人工智能与机器学习在脊柱研究中的应用
JOR Spine. 2019 Mar 5;2(1):e1044. doi: 10.1002/jsp2.1044. eCollection 2019 Mar.
5
Radiological images and machine learning: Trends, perspectives, and prospects.放射影像学与机器学习:趋势、视角与展望。
Comput Biol Med. 2019 May;108:354-370. doi: 10.1016/j.compbiomed.2019.02.017. Epub 2019 Feb 27.
10
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验