Suppr超能文献

基于模糊逻辑和改进的D-S证据理论的煤矿固体充填效果智能评价

Intelligent evaluation of coal mine solid filling effect using fuzzy logic and improved D-S evidence theory.

作者信息

Zhang Zihang, Yang Shangqing, Liu Yang

机构信息

School of Artificial Intelligence, China University of Mining and Technology-Beijing, Beijing, 100083, China.

School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.

出版信息

Sci Rep. 2025 Feb 17;15(1):5750. doi: 10.1038/s41598-025-88913-5.

Abstract

Addressing the inherent fuzziness and uncertainty in filling outcomes, this paper proposes a novel method for evaluating the effectiveness of solid filling operations in coal mines by integrating Interval Type-2 Fuzzy Logic Systems (IT2FLS) with an improved Dempster-Shafer (D-S) evidence theory. Initially, local data fusion is conducted using IT2FLS-Adam, where interval type-2 fuzzy sets are employed to fuzzify input features, and the Adam optimizer is utilized for parameter optimization. This allows for preliminary judgments on filling effects from various perspectives based on local features. To overcome the limitations of local fusion, an improved D-S evidence theory is adopted, which effectively handles conflicting evidence by incorporating the Wasserstein distance and Deng entropy to combine the judgments from local features, achieving global data fusion. Experimental results demonstrate that the proposed method attains a remarkable accuracy of 92.9% in global fusion tasks, surpassing traditional methods. This study provides a data fusion framework for filling workfaces, integrating multi-sensor data and addressing the complexities and uncertainties associated with filling processes, thereby making a significant contribution to the intelligent monitoring and management of coal mine filling operations.

摘要

针对充填效果中固有的模糊性和不确定性,本文提出了一种将区间二型模糊逻辑系统(IT2FLS)与改进的Dempster-Shafer(D-S)证据理论相结合的新方法,用于评估煤矿固体充填作业的有效性。首先,使用IT2FLS-Adam进行局部数据融合,其中采用区间二型模糊集对输入特征进行模糊化处理,并利用Adam优化器进行参数优化。这使得能够基于局部特征从各个角度对充填效果进行初步判断。为了克服局部融合的局限性,采用了改进的D-S证据理论,通过结合Wasserstein距离和邓熵来有效处理冲突证据,以融合来自局部特征的判断,实现全局数据融合。实验结果表明,该方法在全局融合任务中达到了92.9%的显著准确率,超过了传统方法。本研究为充填工作面提供了一个数据融合框架,整合了多传感器数据,解决了与充填过程相关的复杂性和不确定性问题,从而为煤矿充填作业的智能监测和管理做出了重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61c/11833116/c709a9a11b05/41598_2025_88913_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验