Suppr超能文献

用于识别和融合无线传感器网络中冲突数据的新型算法。

Novel algorithm for identifying and fusing conflicting data in wireless sensor networks.

作者信息

Zhang Zhenjiang, Liu Tonghuan, Chen Dong, Zhang Wenyu

机构信息

School of Electronic and Information Engineering, Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Sensors (Basel). 2014 May 30;14(6):9562-81. doi: 10.3390/s140609562.

Abstract

There is continuously increasing interest in research on multi-sensor data fusion technology. Because Dempster's rule of combination can be problematic when dealing with conflicting data, there are numerous issues that make data fusion a challenging task, including the exponential explosion, Zadeh Paradox, and one-vote veto. These issues lead to a great difference between the fusion results and real results. This paper applies the idea of analyzing distance-based evidence conflicts, introduces the concept of vector space, and proposes a new cosine theorem-based method of identifying and expressing conflicting data. In addition, this paper proposes a new data fusion algorithm based on the degree of mutual support between beliefs, which is based on the Jousselme distance-based combination rule proposed by Deng et al. Simulation results demonstrate that the presented algorithm achieves great improvements in both the accuracy of identifying conflicting data and that of fusing conflicting data.

摘要

对多传感器数据融合技术的研究兴趣持续增长。由于在处理冲突数据时,Dempster组合规则可能存在问题,数据融合面临诸多挑战,包括指数爆炸、扎德悖论和一票否决等问题。这些问题导致融合结果与实际结果存在很大差异。本文应用基于距离分析证据冲突的思想,引入向量空间概念,提出一种基于余弦定理的识别和表达冲突数据的新方法。此外,本文基于邓等人提出的基于Jousselme距离的组合规则,提出一种基于信念间相互支持度的新数据融合算法。仿真结果表明,所提算法在识别冲突数据的准确性和融合冲突数据的准确性方面均有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98bb/4118080/c5cbebfaf910/sensors-14-09562f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验