用于阿尔茨海默病早期诊断的基于多模态表面的变压器模型。
Multimodal surface-based transformer model for early diagnosis of Alzheimer's disease.
作者信息
Duong Quan Anh, Tran Sy Dat, Gahm Jin Kyu
机构信息
Department of Information Convergence Engineering, Pusan National University, Busan, 46241, Republic of Korea.
School of Computer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
出版信息
Sci Rep. 2025 Feb 17;15(1):5787. doi: 10.1038/s41598-025-90115-y.
Current deep learning methods for diagnosing Alzheimer's disease (AD) typically rely on analyzing all or parts of high-resolution 3D volumetric features, which demand expensive computational resources and powerful GPUs, particularly when using multimodal data. In contrast, lightweight cortical surface representations offer a more efficient approach for quantifying AD-related changes across different cortical regions, such as alterations in cortical structures, impaired glucose metabolism, and the deposition of pathological biomarkers like amyloid-β and tau. Despite these advantages, few studies have focused on diagnosing AD using multimodal surface-based data. This study pioneers a novel method that leverages multimodal, lightweight cortical surface features extracted from MRI and PET scans, providing an alternative to computationally intensive 3D volumetric features. Our model employs a middle-fusion approach with a cross-attention mechanism to efficiently integrate features from different modalities. Experimental evaluations on the ADNI series dataset, using T1-weighted MRI and [Formula: see text]Fluorodeoxyglucose PET, demonstrate that the proposed model outperforms volume-based methods in both early AD diagnosis accuracy and computational efficiency. The effectiveness of our model is further validated with the combination of T1-weighted MRI, Aβ PET, and Tau PET scans, yielding favorable results. Our findings highlight the potential of surface-based transformer models as a superior alternative to conventional volume-based approaches.
当前用于诊断阿尔茨海默病(AD)的深度学习方法通常依赖于分析全部或部分高分辨率3D体积特征,这需要昂贵的计算资源和强大的图形处理器(GPU),尤其是在使用多模态数据时。相比之下,轻量级皮质表面表征为量化不同皮质区域与AD相关的变化提供了一种更有效的方法,例如皮质结构的改变、葡萄糖代谢受损以及淀粉样β蛋白和tau蛋白等病理生物标志物的沉积。尽管有这些优势,但很少有研究专注于使用基于多模态表面的数据来诊断AD。本研究开创了一种新方法,该方法利用从MRI和PET扫描中提取的多模态、轻量级皮质表面特征,为计算密集型的3D体积特征提供了一种替代方案。我们的模型采用带有交叉注意力机制的中间融合方法,以有效整合来自不同模态的特征。在ADNI系列数据集上使用T1加权MRI和[公式:见正文]氟脱氧葡萄糖PET进行的实验评估表明,所提出的模型在早期AD诊断准确性和计算效率方面均优于基于体积的方法。通过结合T1加权MRI、Aβ PET和Tau PET扫描进一步验证了我们模型的有效性,结果良好。我们的研究结果突出了基于表面的变压器模型作为传统基于体积方法的优越替代方案的潜力。